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RESUMEN

En esta tesis, nos enfocamos en el estudio de problemas de control singular de horizonte infinito
y de variación acotada para procesos de Lévy y difusiones de Itô con aplicaciones a juegos de
campo medio. Nos interesa caracterizar y, en algunos casos, proporcionar una representación
explícita de las estrategias óptimas y dar condiciones suficientes para la existencia y unicidad de
estrategias de equilibrio. Debido a la naturaleza diferente de los procesos de interés, podemos
dividir en dos ramas nuestros métodos:

• Para difusiones de Itô, se plantea un problema de control singular ergódico de variación
acotada. Se da un teorema de verificación para las estrategias óptimas y se encuentra un
candidato como solución de una ecuación diferencial con condiciones de frontera. Luego,
la estrategia de equilibrio del juego de campo medio (MFG) se caracteriza como la raíz de
una ecuación, y se proporcionan condiciones fáciles de verificar para probar su existencia
y unicidad.

• Para procesos de Lévy, trabajamos tanto con un problema de control singular descontado
como con un problema ergódico de variación acotada. Como antes, se plantea un teorema
de verificación. Como en este caso, la ecuación de Hamilton-Jacobi-Bellman (HJB) es una
ecuación integro-diferencial, el curso de acción es probar la relación entre estos problemas
y los juegos de Dynkin (lo cual es conocido para otras familias de procesos). Luego,
utilizamos esta relación para probar la existencia de una estrategia óptima descontada
para el problema descontado y usamos el límite abeliano para caracterizar la estrategia
óptima ergódica. Finalmente, se plantea un teorema de punto fijo para el MFG para
demostrar la existencia de un equilibrio.

La tesis se desarrolla de la siguiente manera. En los capítulos 1 y 2, se presenta la intro-
ducción de los problemas (omitiendo la mayor parte del análisis histórico, ya que preferimos
dar uno detallado en cada capítulo), el marco teórico y la mayoría de las notaciones. En el
Capítulo 3 tratamos un problema de control singular ergódico bilateral para difusiones de Itô y
en el Capítulo 4 añadimos un componente MFG al problema. En el Capítulo 5 tratamos tanto
un problema de control singular ergódico como descontado, bilateral para procesos de Lévy, y
en el Capítulo 6 añadimos un componente MFG al problema.
Las contribuciones de esta tesis se pueden resumir de la siguiente manera:

• En el Capítulo 3 extendemos los resultados de [Alvarez(2018)] a un conjunto de controles
más general, y en el Capítulo 4 analizamos el problema asociado al MFG. Los resultados
fueron publicados en [Christensen et al. (2023)].
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• En el Capítulo 5 demostramos que para procesos de Lévy el problema de control singular
descontado bilateral está asociado a un juego de Dynkin. Además, probamos que el límite
abeliano es válido y damos ejemplos explícitos. Los resultados se pueden encontrar en el
preprint [Mordecki and Oliú (2024)].

• En el Capítulo 6 añadimos un componente MFG al problema planteado en el Capítulo 5,
y utilizando algunas propiedades de regularidad en el juego de Dynkin, demostramos que
existe un equilibrio para el problema descontado y, usando el límite abeliano, demostramos
que también existe un equilibrio para el problema ergódico del MFG.

Para los lectores familiarizados con el tema, presentamos dos formas alternativas de leer esta
tesis.

Capítulo I

Capítulo II

Capítulo III

Capítulo IV Capítulo V

Capítulo VI

Como la literatura es más escasa, el lector puede saltar del Capítulo 2 al Capítulo 5 donde
comienza el estudio de los procesos de Lévy.
Por otro lado, si el lector está bien versado en la relación entre juegos de Dynkin y problemas
de control singular bilateral y desea leer aplicaciones más prácticas, los resultados del Capítulo
5 no serán difíciles de creer y el lector puede saltar del Capítulo 2 al 4 y luego al Capítulo 6
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donde se tratan los problemas MFG.

Palabras claves:
Procesos de Lévy, Difusiones de Itô, Control singular ergodico, Control singular descontado,
Juegos de Campo Medio, Equilibrios de Nash, Juegos de Dynkin.
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ABSTRACT

In this thesis, we focus on the study of infinite horizon singular control problems of bounded
variation for Lévy processes and Itô-diffusions with applications to mean field games. We are
interested in characterizing and in some cases, giving an explicit representation of the optimal
strategies and provide sufficient conditions for the existence and uniqueness of equilibrium
strategies. Due to the different nature of the processes of interest we can divide in two branches
our methods:

• For Itô-diffusions, an ergodic singular control problem of bounded variation is posed. A
verification theorem for the optimal strategies is given and a candidate is found as the
solution of a differential equation with boundary conditions. Then, the mean field game
(MFG) equilibrium strategy is characterized as the root of an equation and easy to check
conditions are given in order to prove its existence and uniqueness.

• For Lévy processes, we work both with a discounted and an ergodic singular control
problem of bounded variation. As before, a verification theorem is posed. As in this
case, the Hamilton-Jacobi-Bellman (HJB) equation is an integro differential equation,
the course of action is to prove the relationship between these problems and Dynkin
games (which is known for other families of processes). Then we use this relationship
to prove the existence of a discounted optimal strategy for the discounted problem and
use the abelian limit to characterize the ergodic optimal strategy. Finally a fixed point
theorem is posed for the MFG to prove the existence of an equilibrium.

The thesis is developed as follows. In chapters 1 and 2, the introduction of the problems
(omitting most of the historical analysis as we prefer to give a detailed one in each chapter), the
theoretical framework and most of the notations are given. In Chapter 3 we treat a two sided
ergodic singular control problem for Itô-diffusions and in Chapter 4 we add a MFG component
to the problem. In Chapter 5 we treat both a two sided ergodic and discounted, singular control
problem for Lévy processes and in Chapter 6 we add a MFG component to the problem.
The contributions of this thesis can be summarized as follows:

• In Chapter 3 we extend the results of [Alvarez(2018)] to a more general set of controls
and in Chapter 4 we analyze the MFG associated problem. The results were published
in [Christensen et al. (2023)]

• In Chapter 5 we prove that for Lévy processes the two-sided discounted singular con-
trol problem is associated to a Dynkin game. Furthermore we prove that the abelian
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limit holds and give explicit examples. The results can be found in the preprint
[Mordecki and Oliú (2024)]

• In Chapter 6 we add a MFG component to the problem posed in Chapter 5, using some
regularity properties in the Dynkin game we prove that there is a equilibrium for the
discounted problem and using the abelian limit we prove that there is also an equilibrium
for the ergodic MFG problem.

For the readers who are familiar with the topic we present two alternative ways of reading this
thesis.

Chapter I

Chapter II

Chapter III

Chapter IV Chapter V

Chapter VI

As the literature is more scarce, the reader can jump from Chapter 2 to Chapter 5 where the
study of Lévy processes begin.
On the other hand, if the reader is well versed in the relationship between Dynkin games and
two-sided singular control problems and want to read more practical applications, the results
of Chapter 5 will not be hard to believe and the reader can jump from Chapter 2 to 4 and then
to Chapter 6 where the MFG problems are treated.

Keywords:
Lévy processes, Itô-diffusions, Ergodic singular control, Discounted singular control, Mean
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field games, Nash equilibrium, Dynkin games.
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Chapter 1

Introduction

In this thesis, we study two-sided stochastic long time singular control optimization problems
and stationary mean field games (MFGs for short) for Itô-diffusions and Lévy processes. The
aim of the following introduction is to describe the problems to be treated and the structure of
the chapters to give a general panorama of the thesis. In fact, we have chosen to relegate most
of the analysis of the selected literature to each chapter in order to make this manuscript more
readable. Moreover, the reader who is not familiar with the mathematical theory mentioned in
the introduction should be able to understand the thesis after reading Chapter 2.

1.1 Two-sided stochastic singular control problems

The control problems of our study are more commonly known as bounded variation, stochastic
singular control optimization problems but, as we are working in the real line, we can make a
distinction between the cost of the increasing part of the control and the cost of the decreasing
one. In stochastic bounded variation control, the displacement of the state caused by the
control is of bounded variation. Moreover, we say it is singular when the optimal control is
the reflection inside an interval. The reason for this name is that for the Brownian motion
(not necessarily for every Lévy processes) the trajectory of the reflected controls in intervals
are singular with respect to the Lebesgue measure.
To keep it short:

• There is a filtered probability space, in other words, information is revealed over time.

• An underlying uncontrolled stochastic process which in this thesis is an Itô-diffusion or
Lévy process.

• There is a set of admissible control processes which is a family of increasing pairs (U,D)

of adapted processes which control the process (the process U push upwards and D
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downwards). Notice that we could have defined admissible controls as a bounded variation
process. However, we want to easily distinguish the increasing and decreasing parts in
our control problems.

• A function which depends on the starting point x of the process and the controls chosen.

• The particularities of our problems make the optimal control a reflecting strategy in an
interval, that is, there is a couple of points so that the best control is to make the smallest
push to keep the process in the interval defined by the points.

As applications of singular controls problems we mention, studies focusing on cash flow man-
agement, recapitalization or a combination of both, while considering risk neutrality. Moreover,
in the ergodic case, singular control problems also have applications in sustainable harvesting
policies. To avoid redundancy, we refer to 3.1 and 5.1 for a selected analysis of the literature.

1.1.1 The ergodic problem

In the two-sided ergodic control problem, we have an integral cost averaged over infinite time,
thus rendering unimportant any initial finite action. To be more specific, the problem consists
of finding a pair (U∗, D∗) that minimizes the expression

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds+ quUT + qdDT

)
,

where Ex is the mean when the uncontrolled process starts at x , Xη = {Xη
t }t≥0 is the controlled

process. The process η = (U,D) is an admissible control, c is a running cost function, qu and qd

are positive constants representing the cost of exercising the controls. Two roadmaps are taken
in this thesis:

• When the underlying process is an Itô-diffusion, we give a verification theorem in the form
of a Hamilton-Jacobi-Bellman (HJB for short) equation that characterizes the optimal
control. We find it explicitly through analytic means. Although original for our specific
problem this is not an unusual technique (see, mostly [Alvarez(2018)]).

• When there is an underlying Lévy process, we give a verification theorem in the same way
as the previous case. However as the HJB equation in this case is an integro-differential
equation, our technique is to study a discounted problem, prove that the abelian limit
holds and the limit characterizes our solution. This allows us to choose a more tractable
set of controls where we use the results of [Andersen et al. (2015)] to obtain the optimal
controls.
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1.1.2 The ϵ-discounted problem

From an operational point of view, the discount rate added to a control problem al-
lows us to work in infinite horizon. The concept has origins applied to physics (see
[Peskir and Shiryaev (2006), Chapter V, page 122]). From a financial point of view, the expo-
nential discount rate occurs when a financial agent discounts future costs by the same factor.
The ϵ-discounted problem we are interested in this thesis is to find an admissible controls
(U∗, D∗) that minimizes the expression:

Ex

(∫ ∞

0

e−ϵs
(
c(XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
.

The literature for this problem when the underlying process is an Itô-diffusion is vast (as it
is exposed in 3.1). For this reason, we are only interested in this problem when there is an
underlying Lévy process. Our roadmap is to

• Postulate a verification theorem in the form of a HJB equation

• Prove that the problem has an associated Dynkin game. This relationship is know under
different frameworks, this is exposed in Chapter 5.

• Find a candidate of the optimal control with the equlibrium points of the Dynkin game.

1.1.3 Reflecting controls

As mentioned earlier, in the control problems we work in this thesis, the best course of action
is to choose an adequate couple of barriers a ≤ b (the inequality is strict if the process has
unbounded variation) and with the minimal possible push, preventing the process from leaving
[a, b]. As it will be explained in 2.5, these controls are well-defined in the sense that they exists
and are unique. Without entering into technical details, for Lévy processes, the reflecting
controls and the reflected process can be intuitively constructed from the one-sided reflections
in the following way:

• Assume a = 0, b > 0 and the starting point of the underlying process X = {Xt}t≥0 is
x ∈ [a, b).

• Define

τ0 = inf{t : X0
t ≥ b}, where X0 is the reflected process on [0,∞),

and the process U = {Ut}t≥0 as the one sided reflecting control of X in the half line
[0,∞).
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• Once the process reaches b, take Xb
t as the reflection of the process Xt−Xτ0+b in (−∞, b]

and define
τ1 = inf{t ≥ τ0 : X

b
t ≤ 0}, Dτ0 := Xτ0 − b, Dt = Dτ0 +Db

t ,

where Db
t is the one sided reflection of the process in (−∞, b].

• Once the process reaches τ1 switch again to the reflection in the lower barrier.

Their regenerative properties allow us to work in the ergodic case (see 2.6). For Lévy processes
the construction is essentially deterministic (see 2.5.4). The case of Itô-diffusions and more
general stochastic processes is explained in 2.5.2 and 2.5.3.

1.2 Mean field games

Paraphrasing [Maschler et. al. (2013)], game theory is the name given to the methodology of
using mathematical tools to model, analyze, predict and even suggest situations of interactive
decision making. These are situations involving several decision makers (called players) with
different goals, in which the decision of each one affects the outcome for all the decision makers.
In game theory, a strategic game or N -player game, consists of a set of players, a strategy set for
each player, and an outcome corresponding to each vector of strategies. One of the theoretical
objectives of strategic games is the search of Nash equilibrium. That is, for an N -player game,
a N -nuple of strategies such that no player has a profitable unilateral deviation from it.
In the search of a Nash equilibrium, when a large quantity of players try to minimize their re-
spective cost functions the simplification that is natural is to treat the asymptotic problem. This
new problem where the players are replaced by a measure or in some cases a function is called
mean field game or for short MFG. A commentary on selected mean field games problem, mostly
similar to the ones of our interest, is in chapters 4 and 6. As a reference, with many relevant
historical examples, we cite two-volume monograph by [Carmona and Delarue (2018)]. For one
of the first works on the matter, see [Lasry and Lions (2006)]. As applications, for instance, in
finance and energy systems see [Carmona(2021)], in traffic management and social dynamics
see [Festa and Göttlich (2018)], in machine learning see [Subramanian & Mahajan (2019)].

1.2.1 A finite time horizon formulation of a mean field game

For the reader who is not familiar with this theory, we recommend not reading
this subsection until finishing reading Chapter 2. This material is extracted from
[Carmona and Delarue (2018), page 132]. Let us consider
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• A complete filtered probability space with an associated d-dimensional Brownian motion
W = {Wt}t≥0.

• A starting initial condition ζ measurable with respect to the initial σ-algebra and that
has second moments.

• A set A of adapted processes, called set of admissible strategies, with reasonable measur-
ability and integrability conditions taking values in a convex set A ⊂ Rd.

• A continuous function c : [0, T ]×Rd×P(Rd)×A → R called running cost and a continuous
function g : Rd × P(Rd) → R called terminal cost.

The MFG problem can be summarized as follows

(i) For each fixed deterministic flow µ = {µt}0≤t≤T on Rd, find α∗ ∈ A that minimizes the
expression

E

(∫ T

0

c(t,Xα
t , µt, αt)dt+ g(Xα

T , µT )

)
,

where Xα = {Xα
t }0≤t≤T is the controlled process.

(ii) Find a flow µ, such that Law(Xµ
t ) = µt, for all t ∈ [0, T ] if the controlled process Xµ is a

solution of the problem above. This µ is called MFG equilibrium.

Here, the process X can be thought as the private state of a representative player. The
methods to solve these problems are diverse. One common technique to solve these problems
is to enlarge the space and use forward backwards stochastic differential equation, FBSDE for
short, to characterize the optimal control, commonly and respectfully called master equation
(see [Carmona and Delarue (2018), 5.7.2]). It is clear that variations of the problems exists,
such as considering discountinuous processes or changing the way that control interacts with
the cost (see Chapter 4 for a wider analysis).

1.2.2 An infinite horizon stationary formulation of a mean field

game

The previous example can be extended to the case T → ∞. However we proceed to restrict
our attention to the mean field games (MFGs) that are of our interest in this thesis. As the
previous case there is an initial optimization problem. These problems are the same (except
some technical restrictions in the set of admissible controls) as the ones postulated in 1.1 with
the exception that now c depends on a second parameter y representing the stationary state
of the infinite players. This simplifies the optimization problem greatly and the stationary
assumption is justified for example in 4.5. Secondly, we assume that in this case the parameter
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is of the form:
y =

∫
Ω

h(x)dµ(x),

for the stationary measure µ. To solve the second part of the MFG, that is to find a MFG
equilibrium we take two routes depending on the underlying process:

• When the process is an Itô-diffusion, we observe that the adjoint HJB that defines the
optimal control now depends on a parameter. This can be translated into a non-linear
equation.

• When the process is Lévy, a fixed point theorem is used for the ϵ-discounted case an the
abelian limit for the ergodic one.

1.2.3 N-player symmetric problem

In contexts similar to ours, the state of the system is the aggregation of private states of
individual players modelled by N -stochastic processes. There is a family of adapted stochastic
processes A, taking values in a set A (usually a metric space) called admissible controls. The
set A, can be dependent on the player but due to the interests of this thesis we need certain
symmetry, thus we assume the set of possible actions is independent of the player. If each
player i chooses an admissible control αi, that person will pay a cost depending on α1, . . . , αN

of the form:
J i(αi, α1, . . . , αi−1, αi+1, . . . , αN).

or J i(αi, α−i) for short. In our ergodic N -player problem, the controls are of the form ηi =

(U i, Di) and the cost for each player i = 1, . . . N, is of the form:

J i(ηi, η−i) = lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xηi

s , η1, . . . , ηN)ds+ quU
i
T + qdD

i
T

)
.

For the ϵ-discounted N -player control problem, it is clear how J i will look. As said before, in
this setting, in the search of an approximate Nash equilibrium the need to work with MFGs
arises. To make the objectives clear, but without going into technical details we give the
following definitions.

Definition 1.2.1. A vector of admissible controls α = (α1, . . . , αN) is called

(i) A Nash equilibrium if

J i(αi, α−i) ≤ J i(α̂i, α−i), ∀α̂i ∈ A, ∀i
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(ii) An ϵ-Nash equilibrium if

J i(αi, α−i) ≤ ϵ+ J i(α̂i, α−i), ∀α̂i ∈ A, ∀i

(iii) An open loop equilibrium if it is a Nash equilibrium under the additional assumption that
α−i = (α1, . . . , αi−1, αi+1, . . . , αN) does not change trajectories once the player i changes
trajectories.

Basically, definition (i) is what one searches in a N -player control game. Definition (ii)
is what ones aspires to get with a MFG equilibrium, that is ϵ as function of the number of
players that tends to zero when N → ∞. Finally, although we are not interested in this thesis
but it will be mentioned in some references, the definition (iii), which is more mathematically
tractable, could be thought of as the abstraction where the other players ignore the change of
action of an individual players.

1.3 Contributions of the thesis

The contributions of this thesis can be summarized as follows

• In Chapter 3 we generalize a two-sided ergodic singular control problem proposed in
[Alvarez(2018)] when the underlying process is an Itô-diffusion. Moreover, in Chapter 4
we add a MFG component, characterize the equlibrium points and give conditions for
existence and uniqueness. The results are published in [Christensen et al. (2023)].

• Chapter 5, is the longest one as we treat a problem with scarce literature. That is two-
sided ergodic and discounted singular control problems when there is an underlying Lévy
process. We use an associated Dynkin game to characterize the optimal controls for the
discounted problem and prove that the abelian limit holds. The results are in the preprint
[Mordecki and Oliú (2024)].

• In Chapter 6 we add a MFG component to the problem in Chapter 5, the main tool is to
use a fixed point theorem in the Dynkin game and the abelian limit for the ergodic case.
The results here have not yet been published.

1.4 Thesis structure

Finally, we briefly describe the structure of the thesis.

In Chapter 2 we write down most of the notations and the minimal necessary theory needed
for an understanding of most of the thesis, except for some of the results of the Appendix.
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• In Section 2.1 we give some basic definitions with the aim of formalizing the concept of
information up to a fixed time.

• In Section 2.2 we define and give some useful properties of the processes that will be
studied in this thesis.

• In Section 2.3 we bring a brief summary of the tools of stochastic calculus that will be
used.

• The topic we treat in Section 2.4 is excessive functions, that is, the probabilistic view of
harmonic theory. Obviously we just give a brief resume of this rich topic as it is crucial
in optimization problems.

• In Section 2.5 we explain the general characteristics of the optimal strategies of the
problems in our thesis, that is, reflecting strategies.

• In Section 2.6 we enumerate the results of regenerative theory that will be used in this
thesis. As our problems are of infinite horizon, it is natural to use this theory.

• In Section 2.7, we formalize most of the setting of singular control problems.

• The relationship of Dynkin games and two-sided singular control problems, which was
mentioned earlier, is better summarized in Section 2.8. This is one of the central topics
of Chapter 5 and here we briefly explain the Dynkin game that will be used.

• Finally in Section 2.7, we give the notations and postulate the MFGs of our interest.

In Chapter 3 we treat an ergodic two-sided singular control problem when the problem is
an Itô-diffusion. The objective is to generalize [Alvarez(2018)] to a more general set of controls.

• In the introduction 3.1 we give a brief summary of some selected works.

• In Section 3.2 we laid down the notations and problem of this Chapter.

• In Section 3.3 we write the most important results of [Alvarez(2018)], that is, the charac-
terization, existence and uniqueness of the optimal controls within the family of reflecting
controls (Theorem 3.3.3).

• Moreover in 3.4 we extend the results of the previous section to a more general family of
controls (Theorem 3.4.2).

• Finally, in Section 3.5 we give some examples when the underlying processes are Orstein-
Ulhenbeck and Brownian motion with drift.

In Chapter 4 we add a MFG component to the problem posed in the previous chapter.

• In Section 4.1, we mention some of the applications of MFGs and give a brief resume of
some selected works.
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• In Section 4.2 we are concerned with writting down the setting.

• In Section 4.3 we characterize the MFG equilibrium in Theorem 4.3.3. Furthermore we
give conditions for the existence and uniqueness of MFG equilibrium points for a particular
class of running costs (Proposition 4.3.5).

• In Section 4.4 we give explicit examples when the underlying processes are Orstein-
Ulhenbeck and Brownian motion with drift.

• Finally, in Section 4.5 we study the approximation for the N -player control problem. The
main result here is Theorem 4.5.1.

In Chapter 5 we study an ergodic and a discounted two-sided, long time average singular
control problem when the underlying process is a Lévy process.

• As usual, in Section 5.1 we provide a selected analysis of the literature. In this case we are
concerned with the relationship between the problems of the chapter and Dynkin games.

• In Section 5.2 we give the notations and main results of the chapter.

• In Section 5.3 we give verification results that provides sufficient conditions for controls to
be optimal for both the ergodic and the discounted problems. See theorems 5.3.6, 5.3.5,
5.3.4 and 5.3.3.

• In Section 5.4, we study the properties of an associate Dynkin game, mostly harmonic
properties in Proposition 5.4.1 and in propositions 5.4.4, 5.4.5 and 5.4.6 regularity prop-
erties.

• In Section 5.5, in Theorem 5.2.1, we show that the solution of the discounted problem is
the solution of a Dynkin game in the sense that the continuation region of the Dynkin
game is an interval whose extremes define a two-sided reflecting optimal control for the
discounted problem. For that endeavor, several properties referencing the reflecting con-
trols are studied. Furthermore, we prove that the abelian limit holds (see Theorem 5.2.2).

• In Section 5.6, we present three examples, the first two when the driving Lévy process are
Compound Poisson process with two-sided exponential jumps with and without Gaussian
component, the third involving a strictly stable process with finite mean.

In Chapter 6 we incorporate a mean field game dependence into the two-sided discounted
and ergodic problems posed in the previous chapter.

• In Section 6.1 we give a a brief resume of some selected articles.

• In Section 6.2 we define the framework and the main results of this chapter, that is, we
characterize and give conditions for the MFG equilibrium to hold in Theorem 6.2.3 and
Theorem 6.2.4.
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• In Section 6.3 we use the adjoint Dynkin game to prove that there is a MFG equilibrium for
the ϵ-discounted control problem, for that endeavor we use Brouwer Fixed Point Theorem
to prove Theorem 6.2.3. That is proving that the MFG ϵ-discounted MFG equilibrium
point exists and it is the solution of an HJB equation.

• In Section 6.4 we use regenerative theory to prove Theorem 6.2.4. To keep it short, we
prove that equilibrium points in the discounted case have a convergent subsequence to a
MFG equilibrium for the ergodic problem.

• In Section 6.5 we provide numerical examples.

• Finally in Section 6.6 we study the convergence of the N -player game to the MFG for
both problems (see Theorem 6.6.1).
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Chapter 2

Theoretical framework and formulation
of the main problems

Abstract
In this chapter, we write the minimal necessary theory needed for a complete understanding of this
thesis (with the exception of the Appendix). We also explain the problems to be studied in the rest
of the thesis.

The objectives of this chapter, assuming that the reader has basic knowledge of measure
theory and probability, are:

• expose the minimum necessary theory used in the thesis,

• provide most of the definitions that are used and

• explain the problems to be studied in subsequent chapters.

2.1 General framework

2.1.1 Filtered probability space

In this thesis we study optimization problems where the actor must choose the adequate times
to act. Thus, in this subsection, we formalize the term information up to time t ≥ 0. As usual,
we use the triad (Ω,F ,P) to denote a probability space.

Definition 2.1.1. [Borodin (2013), Chapter I, Section 3]. Let Σ be an arbitrary set. A stochas-
tic process is a family

X = {X(t, ω), t ∈ Σ},
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and for a fixed ω ∈ Ω the map t → Xt is called a path. From now on, we omit the term ω and
write Xt instead of X(t, ω). Moreover, in this thesis Σ = R+ and the only family of processes
we work have càdlàg paths (right-continuous with left limits) almost surely. For simplicity, we
say that such processes are càdlàg.

When we say that two process are equal, we mean by that the next definition.

Definition 2.1.2. [Borodin (2013), Chapter I, Section 3] Two stochastic processes X =

{Xt}t≥0 and Y = {Yt}t≥0 defined in the same probability space

(i) are stochastically equivalent or modifications of each other if P(Xt = Yt) = 1, for all
t ≥ 0,

(ii) are indistinguishable or equivalent if P(Xt ̸= Yt for every t ≥ 0) = 0.

It is clear that (ii) implies (i) but in the case that the processes are càdlàg the conditions are
equivalent.

We proceed to define a filtered probability space. Informally speaking it is a probability space
with an associated sequence of σ-algebras {Ft}t≥0 such that Ft represents the information up
to time t.

Definition 2.1.3. [Borodin (2013), Chapter I, Section 4] A family of σ-algebras F = {Ft, t ≥
0} on (Ω,F) is called a filtration if

Fs ⊂ Ft ⊂ F , for every 0 ≤ s ≤ t.

Moreover we say that a filtration is right continuous if for every t ≥ 0:

Ft = Ft+ :=
⋂
h>0

Ft+h.

The quadruple (Ω,F ,F,P) is called a filtered probability space. It is said to satisfy the usual
conditions if

• F is P-complete,

• F0 contains all P-null sets of F and

• F is right-continuous.

In this thesis all filtrations satisfy the usual conditions.

In the next remark we mention Feller processes but due to not being used in this thesis we
ommit its definition. However, we remark that Itô-diffusions and Lévy processes are part of
this family of stochastic processes.
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Remark 2.1.1. Aside from the fact that the usual conditions saves us from working around
with pathological cases, it is a natural property for the σ-algebras that we use in this thesis. To
be more specific, the completed natural filtration of a Feller process satisfy the usual conditions.

Definition 2.1.4. [Borodin (2013), Chapter I, Section 4] A stochastic process X = {Xt}t≥0

defined on a filtered probability space (Ω,F ,F,P) is adapted to the filtration F if for every t ≥ 0,

Xt is Ft-measurable. A stochastic process X is always adapted to its natural filtration F =

{Ft}t≥0, Ft = σ(Xs, s ≤ t). We remark that a càdlàg adapted stochastic process is also
progressively measurable. That is, for every t ≥ 0, the map (s, ω) → X(s, ω) from [0, t]×Ω to
R is B([0, t])×Ft-measurable.

Informally speaking, in the previous definition means that up to time t, a process can be
described with the information up to time t.

Definition 2.1.5. A random variable τ : Ω → [0,∞] is a stopping time if the event {τ ≤ t} ∈
Ft, for every t, 0 ≤ t ≤ ∞. Moreover we define

Fτ = {A ∈ F , A ∩ {τ ≤ t} ∈ Ft, for all t ≥ 0}.

Theorem 2.1.1. [Protter (2005), Chapter I, Section 1, Theorems 3 and 4] Let X = {Xt}t≥0

an adapted càdlàg stochastic process and A an open set then the following random variables are
stopping times:

τA := inf{t : Xt ∈ A}, τAc := inf{t : Xt ∈ Ac or X−
t ∈ Ac}.

From now on, unless specified we always assume a given filtered completed probability space
(Ω,F ,F,P).

2.1.2 Martingales and local martingales

Informally speaking, the purpose of this subsection is to formalize the concept of working with
information available at time t.

Definition 2.1.6. [Borodin (2013), Chapter I, Section 2] Let X be a random variable with
E|X| < ∞. The conditional expectation E(X|Q) of X given a σ-algebra Q ⊂ F is the Q-
measurable random variable such that∫

B

E(X|Q)dP =

∫
B

XdP,

for every B ∈ Q. This random variable exists and is unique almost surely.
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A martingale could be thought as an stochastic process X such that the best guess at time
t of the value of the process Xt, based on only the information up to time s ≤ t, is Xs (with
some reasonable integrability conditions).

Definition 2.1.7. [Borodin (2013), Chapter I, Section 5] An adapted stochastic process X =

{Xt}t≥0 is called martingale (respectively, supermartingale, submartingale) with respect to the
filtration F = {Ft}t≥0 if

(i) E|Xt| < ∞ for all t ≥ 0.

(ii) E(Xt|Fs) = Xs (respectively , E(Xt|Fs) ≤ Xs, E(Xt|Fs) ≥ Xs)) a.s for every pair s, t

such that s ≤ t.

Theorem 2.1.2 (Doob’s Optional Sampling Theorem). Let X be a right-continuous mar-
tingale, such that there is a random variable X∞ ∈ L1(Ω) that satisfies E(X∞|Ft) = Xt

for all t ≥ 0. Let S ≤ T a.s be two stopping times. Then XS and XT are integrable and
E(XT |FS) = XS a.s

The integrability conditions can be too restrictive. In some cases enough information can
be obtained from a stochastic process if it is locally a martingale. Let us remark that we use
the usual definition of uniformly integrable family of functions.

Definition 2.1.8. [Protter (2005), Chapter I, Section 6] An adapted càdlàg process X =

{Xt}t≥0 is a local martingale if there exists a sequence of increasing stopping times τn with
limn→∞ τn = ∞ a.s. such that Xt∧τn1τn>0 is a uniformly integrable martingale for each n.

Remark 2.1.2. The condition τn > 0 is considered in order to relax the integrability conditions
of X0. It can be proven that any martingale is a local martingale. The converse is not always
true even if suptE|Xt| < ∞.

2.2 Underlying processes

2.2.1 Introduction

The processes studied in this thesis are controlled Itô-diffusions and controlled Lévy processes.
Before going into the definition of controls, let us start with the basics. We mention again that
a filtered probability space is given.

Definition 2.2.1. [Kyprianou(2006), Chapter I, Section 1] A real valued process W = {Wt}t≥0

is said to be a Brownian motion if the following hold:
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(i) The paths of W are P-almost surely continuous.

(ii) P(W0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Wt −Ws is equal in distribution to Wt−s.

(iv) For 0 ≤ s ≤ t, Wt −Ws is independent of {Wu : u ≤ s}.
(v) For each t > 0, Wt is equal in distribution to a normal random variable with variance t.

Definition 2.2.2. A process valued on the non negative integers N = {Nt}t≥0 is said to be a
Poisson process with intensity λ > 0 if the following hold:

(i) The paths of N are P-almost surely càdlàg.

(ii) P(N0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Nt −Ns is equal in distribution to Nt−s.

(iv) For 0 ≤ s ≤ t, Nt −Ns is independent of {Nu : u ≤ s}.
(v) For each t > 0, Nt is equal in distribution to a Poisson random variable with parameter

λt.

Definition 2.2.3. [Kyprianou(2006), Chapter I, Section 1] Suppose that N = {Nt}t≥0 is a
Poisson process with intensity λ > 0 and that {ζi : i ≥ 1} is an i.i.d. sequence of random
variables (independent of N), a compound Poisson proces X = {Xt}t≥0 is defined as

Xt =
Nt∑
i=0

ζi, ζ0 := 0.

2.2.2 Stochastic integration with respect to the Brownian motion

To define an Itô-diffusion, first we need to give a notion of an integral with respect to a Brownian
motion. Although we use more general integrals and integrands in this thesis, the uncontrolled
processes in our problems are simpler in nature.

Definition 2.2.4. [Protter (2005), Chapter II, page 51] A process H is said to be simple
predictable if H has a representation of the form

Ht = H01{0}(t) +
n∑

i=1

Hi1(Ti,Ti+1](t),

where 0 = T1 ≤ · · · ≤ Tn+1 < ∞ is a finite sequence of stopping times, Hi ∈ FTi
, |Hi| < ∞

a.s, 0 ≤ i ≤ n. The collection of simple predictable processes is denoted by S.

These are our stochastic step functions that allows to build stochastic integrals

15



Definition 2.2.5. [Protter (2005), Chapter II, page 58] Let W = {Wt}t≥0 be a Brownian
motion and H ∈ S with the same notations as above, we define the stochastic integral of H with
respect to W as:

JW (H) = (H ·W )t =

∫ t

0

HsdWs := H0W0 +
n∑

i=1

Hi(XTi+1∧t −XTi∧t).

Notice that we allow here W0 ̸= 0, that is we allow W to be a Brownian motion not starting at
zero (a translated Brownian motion).

The next step is to extended JW with an appropriate metric. We remark that naively using
convergence a.s does not works in general (see [Protter (2005), Chapter I, Section 8]).

Definition 2.2.6. A sequence of processes {Hn}n∈N converges to a process H uniformly on
compacts in probability (abbreviated ucp) if, for each t > 0, sup0≤s≤t |Hn

s − Hs| converges to
zero in probability.

Theorem 2.2.1. [Protter (2005), Chapter I, Theorem 10 and Chapter II, Theorem 11] The
space S is dense in L with the ucp topology, where L denotes the space of left-continuous with
right limits stochastic processes. Moreover, the map JW : Sucp → Ducp, where Ducp are the
càdlàg processes embedded with the ucp topology is a continuous map.

With these results we can define the integral in a wider set of stochastic processes.

Definition 2.2.7. Denoting Lucp the set of left-continuous with right limits stochastic processes,
we define the map JW : Lucp → Ducp as the extension of JW defined in 2.2.5 and call it stochastic
integral with respect to Brownian motion.

The integrands can be in fact be in a more general family, we will return to this topic later,
we refer to the books [Borodin (2013), Jacod and Shiryaev (2003), Protter (2005)].

Remark 2.2.1. The usual properties of integrals hold (see [Protter (2005), Chapter II, Section
5] or [Borodin (2013), pages 88 and 89]).

2.2.3 Itô-diffusion

An Itô-diffusion is a solution to a specific type of stochastic differential equation driven by a
Brownian motion. In other words, it is in the class of the solutions of an integral equation with
respect to dt and dWt.
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Definition 2.2.8. A process Xt, X0 = η, is said to be a strong solution of the stochastic
differential equation (abbreviated SDE) up to the stopping time τ

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = η, (2.1)

if X is continuous Ft-adapted process such that almost surely for all t ≤ τ

Xt −X0 =

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, X0 = η.

From now on, we denote Px,Ex the associated probability measure and expected value
respectively when the process satisfies X0 = x.

Remark 2.2.2. This definition suggests the existence of a weak solution, such a solution exists
when the probability space needs to be enlarged. Heuristically, as we do not want to modify our
information, in this thesis we only work with strong solutions.

Theorem 2.2.2. [Borodin (2013), Chapter II, Theorem 7.1] Fix T ∈ [0,∞]. Suppose that
functions µ and σ satisfy Lipschitz conditions up to time T , both grow at most linearly up to
time T and Eη2 < ∞. Then there exists a unique strong solution of 2.1 up to T satisfying the
conditions

sup
0≤t≤T

EX2(t) < ∞.

The Lipschitz Hypothesis can be weakened, see [Protter (2005), Chapter V], for a more
exhaustive study.

Theorem 2.2.3. [Protter (2005), Chapter VI, Theorem 38] Assume µ and σ are locally Lips-
chitz. Then there is a function ζ(x, ω) : R×Ω → [0,∞] such that for each x, ζ(x, ·) is a stopping
time and there exists a unique strong solution of 2.1 up to ζ(x, ·) with lim supt→ζ(x,·) |Xt| = ∞
almost surely on {ζ < ∞} and X has continuous paths on [0, ζ(x, ·)).

The function ζ is called explosion time.

Definition 2.2.9. With the notations of Definition 2.1 and under the hypothesis of 2.2.3, if
µ and σ do not depend on t and σ > 0, we say that it is a strong solution up to its explosion
time is an Itô-Diffusion (sometimes called homogenous Itô-Diffusion).

Remark 2.2.3. The condition σ > 0, makes the diffusion regular, without entering into tech-
nical details, for every arbitrary point y, the Px probability of reaching that point in finite time
is not zero for every x ∈ R (see [Rogers and Williams (2000), Chapter V, Section 47, Remark
(ii)]). This is fundamental to obtain ergodic properties that will be used in 3 and 4.
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We proceed to define the density of the scale and the speed measure. These notions will
have an important role in 3 and 4, ([Borodin and Salminen(2002), Chapter II, Definition 4] and
[Rogers and Williams (2000), Chapter V, section 45]).

Definition 2.2.10. The density of the scale function S(x) w.r.t the Lebesgue measure as

S ′(x) = exp

(
−
∫ x 2µ(u)

σ2(u)
du

)
,

and the density of the speed measure m(x) w.r.t the Lebesgue measure as

m′(x) =
2

σ2(x)S ′(x)
.

Remark 2.2.4. The scale can also be defined as

Px(γ[b,∞) − γ(−∞,a]) =
S(x)− S(a)

S(b)− S(a)
, a < x < b,

where, γC is defined as the first entry to the set C.

Remark 2.2.5. The speed measure also has a more intuitive, yet analytically less clear in our
case, way to be defined. However, it requires us to define local times, so we simply remark that
when s(x) = x for all x, the bigger is the number m([a, b]), the slower the diffusion moves in
that interval.

2.2.4 Lévy processes

The other family of processes that we study in this thesis are the Lévy processes. In certain
sense, due to their properties, the arguments we make in this thesis in the optimization problems
when the underlying process is Lévy are more probabilistic in nature that the ones put forward
when the process is an Itô-diffusion (which are more analytical). As usual a probability space
under the usual hypothesis is given.

Definition 2.2.11. [Kyprianou(2006), Chapter I, Definition 1.1] A process X = {Xt}t≥0 is a
said to be a Lévy process if it possesses the following properties:

(i) The paths of X are P almost surely right-continuous with left limits.

(ii) P(X0 = 0) = 1.

(iii) For 0 ≤ s ≤ t, Xt −Xs is equal in distribution in Xt−s.

(iv) For 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.
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From now on, we denote Px, Ex the associated probability measure and expected value
respectively when a process satisfies Xt−x is a Lévy process and call it a Lévy process starting
at x. As expected, the sum of independent Lévy processes is a Lévy process. Moreover, Lévy
processes are strong markov processes, in fact they satisfy the stronger following property.

Theorem 2.2.4. [Kyprianou(2006), Chapter III, Theorem 3.1] Suppose that τ is a stopping
time. Define on {τ < ∞} the process Y = {Yt}t≥0 where Yt = Xτ+t −Xτ . Then on the event
{τ < ∞} the process Y is independent of Ft and has the same law as X and hence in particular
is a Lévy process.

An important property of the Lévy processes (see for example, [Kyprianou(2006), Chapter
I, equation (1.2)]) is that for each t > 0:

ϕt(z) = log
(
E(ezXt)

)
= t log

(
E(ezX1)

)
= (ϕ1(z))

t, z = iθ ∈ iR,

It can be proven that the function ϕ1 (which we denote ϕ from now on) characterizes the
law of the process. From now on, we assume that the E|X1| < ∞ (which implies E|Xt| < ∞ for
all t ≥ 0). We remark that the Brownian motion has finite moments. Moreover a compound
Poisson process has finite moments iff its jumps have finite moments. The Lévy-Khintchine
formula characterizes the law of the process, stating

ϕ(z) = log
(
E(ezX1)

)
, z = iθ ∈ iR,

with
ϕ(z) =

σ2

2
z2 + zµ+

∫
R
(ezy − 1− zy)Π(dy),

where µ = E(X1) ∈ R, σ ≥ 0 and Π(dy) is a non-negative measure (the jump measure)
that satisfies in our case

∫
R(y

2 ∧ |y|)Π(dy) < ∞. This claim is valid (although the formula
is simplified in this case) when the process has no finite expected value. The proof of this
is in plenty of books, we refer to [Kyprianou(2006), Chapter I, Theorems 42 and 43], for a
probabilistic approach and [Sato (1999), Chapter II], for a more analytic approach. We remark
that the converse is also true. To be more specific, if there is a function ϕ satisfying the
conditions above, then there is a Lévy process X such that ϕ(z) = log

(
E(ezX1)

)
, z = iθ. The

Lévy-Khintchine formula also allows to describe any Lévy process as the sum of a Brownian
motion with drift, a compound Poisson process and a series of compensated compound Poisson
processes. To understand the last process we need some definitions first.

Definition 2.2.12. [Kyprianou(2006), Chapter II, Definition 2.3], Let (S,S, η) an arbitrary
σ-finite measure space. Let N : S → {0, 1 . . . } ∪ {∞} in such a way that the family {N(A) :
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A ∈ S} are random variables defined on the probability space (Ω,F ,P). Then N is called a
Poisson random measure on (S,S, η) if

(i) for mutually disjoint A1, . . . , An in S, the variables N(A1), . . . , N(An) are independent.

(ii) for each A ∈ S, N(A) is Poisson distributed with parameter η(A) (here we allow 0 ≤
η(A) ≤ ∞.

(iii) P-almost surely N is a measure.

We remark, that in general for a (S,S, η) as above there exists a Poisson random measure
(see [Kyprianou(2006), Chapter II, Theorem 2.4]).

Lemma 2.2.5. [Kyprianou(2006), Chapter II, Lemma 2.8 and 2.9] Suppose that N is a Poisson
random measure on ([0,∞)×R,B[0,∞)×B(R), dt×Π(dx)) where Π is a measure concentrated
on R− {0} and B ∈ B(R) such that 0 < Π(B) < ∞. Then

(i)

Xt :=

∫
[0,t]

∫
B

xN(ds× dx), t ≥ 0

is a compound Poisson process with arrival rate Π(B) and jump distribution
Π(B)−1Π(dx)|B

(ii)

MB
t := Xt − t

∫
B

xΠ(dx), t ≥ 0

is a P-martingale with respect to the filtration

σ(N(A) : A ∈ B[0, t]× B(R)), t ≥ 0. (2.2)

We call such a martingale a compensated compound Poisson process.

Theorem 2.2.6. [Kyprianou(2006), Chapter II, Theorem 2.8] With the notations of the previ-
ous lemma, assume

∫
(−1,1)

x2Π(dx) < ∞ and for ϵ > 0 define Bϵ := (−1, 1)− (−ϵ, ϵ). Let MBϵ
t

be the martingales defined in the previous lemma for the completation of the filtration (2.2).
Then, there exists a Lévy process M = {Mt}t≥0, which also is a martingale with countable
number of jumps to which {{MBϵ

t }t≥0}ϵ>0 has a subsequence {{MBϵn
t }t≥0}n∈N, ϵn → 0 when

n → ∞ converges in ucp to M .

From now on, the measure Ñ(ds, dy) = N(ds, dy) − dsΠ(dy) will be called compensated
Poisson random measure and the martingale Mt defined in the previous lemma will be written
as

Mt =

∫
[0,t]×R

y Ñ(ds, dy).
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The next theorem holds for every Lévy process, but as we only work with processes with first
moments, we choose to give a simplified version. For references, see for example [Borodin (2013),
Sato (1999), Protter (2005), Jacod and Shiryaev (2003)].

Theorem 2.2.7 (Lévy decomposition Theorem). Every Lévy process with finite moments, can
be expressed as

Xt = X0 + µt+ σWt +

∫
[0,t]×R

y Ñ(ds, dy).

with W and Ñ independent processes.

Basically, the Theorem boils down to:

• The big jumps give a compound Poisson process.

• The small jumps are compensated and Mt is obtained.

• What is left is a continuous Lévy process. The only continuous Lévy process is the
Brownian motion with drift.

From the decomposition, the following lemma is obtained

Lemma 2.2.8. [Kyprianou(2006), Chapter II, Lemma 2.12] A Lévy process with a Lévy-
Khintchine exponent corresponding to the triple (µ, σ,Π) has paths of bounded variation if and
only if

σ = 0,

∫
R
(1 ∧ |x|)Π(dx) < ∞.

In that case we denote

S+
t := max(µ, 0)t+

∫ t

0

∫
x≥0

xN(ds× dx), S−
t := −min(µ, 0)t−

∫ t

0

∫
x≤0

xN(ds× dx).

These processes are independent subordinators (increasing Lévy processes).

2.3 Stochastic calculus

In this section we give a brief resume of the stochastic calculus tools we are going to use. First
we need to define good integrators.

2.3.1 Semimartingales and stochastic integration

We use Definition 2.2.4 for S. Furthermore we denote Su when S is endowed with the uniform
topology in (t, ω) and L0 the space of finite random variables topologized by convergence in
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probability.

Definition 2.3.1. A càdlàg, adapted stochastic process X = {Xt}t≥0 is a semimartingale if for
every T ≥ 0, the map:

IXT (H) = H0X
T
0 +

n∑
i=1

Hi(XTi+1∧T −XTi∧T )

is continuous (H as in 2.2.4).

This definition clarifies why a semimartingale is a good integrator, however, it is quite
abstract. An equivalent definition is that a semimartingale is a process that can be decomposed
as Xt = M0 + Mt + At with Mt a local martingale and At a cádlag finite variation process.
Lévy processes and Itô-diffusions are examples of semimartingales.

2.3.2 Stochastic integration

Integration with respect to a martingale can be defined for predictable processes, since in this
thesis it is not necessary, we simply extend it for left-continuous with right limits processes.

Theorem 2.3.1. Theorem 2.2.1 is valid if we replace JW by JX , for any X = {Xt}t≥0 semi-
martingale.

We then define the stochastic integral with respect to a semimartingale X = {Xt}t≥0 as in
Definition 2.2.7 but with JX instead of JW . Again, the expected linear properties hold.

A integral with respect to a martingale does not needs to be a martingale, however the
following lemma holds.

Lemma 2.3.2. If Z = {Zt}t≥0 is a semimartingale and X = {Xt}t is a local martingale then

(i) It =
∫ t

0
Zs−dXs is a local martingale.

(ii) If X is a Lévy process and Z is bounded then It is a martingale.

The first statement can be found for example in [Protter (2005), Chapter IV, Section 2,
Theorem 29]. For the second one, we prove it in the appendix, Lemma A.2.1 as it will be used
in Chapter 5.

Under this framework a stochastic differential equation is of the form

Xt −X0 =

∫ t

0

f(s,Xs−)dZs,
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where Z is a semimartingale. As said before, we are only interested in strong solutions. We do
not list general results here of existence and uniqueness (again see for example [Protter (2005)])
as the only classes of SDE we study will be treated with more detail.
Although they are not the focus in this thesis, we define Itô-jump-diffusions as they are refer-
enced many times.

Definition 2.3.2. [Øksendal & Sulem, (2005), Chapter I, Section 1.3] The following SDE in
Rn (here the SDE is defined as a vector) is called Itô-Jump-diffusion:

dXt = µ(Xt)dt+ σ(Xt)dWt +

∫
Rn

γ(Xt− , y)Ñ(ds× dy), X(0) = x ∈ Rn.

where µ : Rn → Rn, σ : Rn → Rn×m, γ : Rn × Rn → Rn and W = {Wt}t≥0 is a multidi-
mensional Brownian motion. To simplify the notation, We say X is an Itô-jump-diffusion with
parameters (µ, σ, γ, Ñ)

2.3.3 Itô formula

As explained in the introduction, we are interested in controlled Lévy processes and Itô-
diffusions by processes of bounded variation. As it is our intention to make this thesis rea-
sonably self-contained, we write several versions of the Itô formula to avoid dealing with the
theory of semimartingale compensation and quadratic variation. There are many books where
the Itô formula is proven, we put the reference of the one we transcribed the text. The first
statement is [Protter (2005), Chapter II, Theorem 31]. The second and third statements are a
particular case of [Protter (2005), Chapter II, Theorem 32].

Theorem 2.3.3. Let V be a process of finite variation with right-continuous paths. Suppose
f ∈ C1(R). Then f(V ) := {f(Vt)}t≥0 is a finite variation process and

f(Vt)− f(V0) =

∫ t

0+
f ′(Vs−)dVs +

∑
0<s≤t

(f(Vs)− f(Vs−)− f ′(Vs−)△ Vs) .

Theorem 2.3.4. Assume µ and σ are continuous functions. U = {Ut}t≥0, D = {Dt}t≥0 are a
pair of cádlag processes with finite first moments for each t ≥ 0 and the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt + dUt − dDt, X0 = x,

has a unique strong solution with no finite explosion time. Then, if f ∈ C2(R) is a function
with first derivate constant outside an interval:
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f(Xt)− f(X0) =

∫ t

0+
f ′(Xs−)(µ(Xs−)ds+ dUs − dDs)

+
1

2

∫ t

0+
σ2(Xs−)f

′′(Xs−)ds+
∑
0<s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)△Xs−) .

Theorem 2.3.5. Assume X = {Xt}t≥0 is a Lévy process with finite first moment and un-
bounded variation. U = {Ut}t≥0, D = {Dt}t≥0 are a pair of cádlag processes with finite first
moment for each t ≥ 0. Then, if f ∈ C2(R) is a function with first derivate constant outside
an interval:

f(Xt)− f(X0) =

∫ t

0+
f ′(Xs−)dXs +

σ2

2

∫ t

0+
f ′′(Xs−)ds

+
∑
0<s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)△Xs) .

In the following chapters the reader will observe that the lower limit in the integrals is 0

instead of 0+, in fact this varies in the literature but it is just a problem in notation. To be
more clear, we define X0− := 0 and notice that in the processes we study there is no jump at
t = 0.

2.4 Excessive functions and the infinitesimal generator

In our optimizations problems, we need to formalize the concept of a function where it is not
convenient to leave the underlying process uncontrolled in a certain region. For the following
definitions (i) and (ii) see [Peskir and Shiryaev (2006), Chapter I, Section 4] and [Peskir(2009),
Section 2] respectively.

Definition 2.4.1. Consider V : R → R+ a measurable function. We say that

(i) V is P-excessive or superharmonic (P- subharmonic) if

Ex(V (Xt)) ≤ (≥) V (x), for all x ∈ R.

(ii) Given a Borel set C, we say V is P-excessive in C or superharmonic in C (P -subarmonic
in C) if

Ex(V (Xt∧γCc )) ≤ (≥) V (x), for all x ∈ R,
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where
γCc = inf

t≥0
{Xt /∈ C}.

Speaking informally, excessiveness means that if we let the process run up to time t, then
in mean, the value obtained will be smaller than the initial value. Moreover excessivenes in C

means the same, with the precaution that we must stop the process when we leave C.
In some cases, the objective is not to compare the process at the starting time with the future,
but to compare it by taking into account that there is a depreciation in value over time and a
cost over observations. In other words, we are interested in inequalities (and equalities) of the
type:

Ex(e
−ϵ(t∧γCc )V (Xt∧γCc )) +

∫ t∧(γCc )

0

c(Xs, s)ds ≤ (≥) V (x), for all x ∈ R. (2.3)

For a reference, see for example, [Peskir and Shiryaev (2006), Chapter III, Section 7].
As mentioned earlier, the study of the operator (t, V ) → Ex(V (Xt)) defined for a nice set of
functions is essential for solving the problems posed in this thesis. This operator is an example
of contraction semigroup. For the next definition and theorem, we refer to [Borodin (2013),
Chapter IV], [Sato (1999), Chapter VI ] and [Dynkin, E. B. (1965), Chapter II].

Definition 2.4.2. Given a strong Markov process X = {Xt}t≥0. We define the operator L,
called infinitesimal generator, as:

LXu(x) := lim
t→0

Exu(Xt)− u(x)

t
, (2.4)

whose domain are the measurable functions such that the limit u exists for every x ∈ R. We
call such set domain of the infinitesimal generator. As a remark, the infinitesimal version of
equation (2.3) is of the form:

Lxu(x)− ϵu(x) + c(x) ≤ (≥) 0.

Theorem 2.4.1. If X = {Xt}t≥0 is an Itô-difussion or a Lévy process then the set C2
0(R)

of twice continuously differentiable functions with compact support is in the domain of the
infinitesimal generator and for every u ∈ C2

0(R):

(i) if the process is an Itô-diffusion (with the usual notations) then

LXu(x) = µ(x)u′(x) +
σ2(x)

2
u′′(x),
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(ii) if the process is Lévy (with the usual notations) then

LXu(x) = µu′(x) +
σ2

2
u′′(x) +

∫
R

(
u(x+ y)− u(x)− u′(x)y1|y|≤1

)
dΠ(y).

As commented in the definition of an excessive function on a set, it will be helpful if we could
be able to obtain properties of the operator x → Ex(Xt∧γCc ). This is where the characteristic
operator comes into play. That is, instead of taking t deterministic in the denominator and the
process Xt in the nominator of the limit (2.4) we take Ex(γCc) and XγCc respectively. Where
γCc is the first exit of a neighborhood of x and the limit is taken by shrinking the neighbor-
hoods. In some cases, both generators coincide, see for example [Dynkin, E. B. (1965), Chapter
V, Theorem 5.2].

To conclude this section, we explain what we mean when we denote Hamilton-Jacobi-
Bellman equation (abbreviated HJB equation). Following [Festa. et. al. (2017), Section 1.2],
we do not give a precise definition. The next discussion is based on [Yong and Zhou(1999),
Chapter IV, Setion 1]. Each departing state X0 of our underlying processes determines a dif-
ferent stochastic optimization problem. The relationship between these problems is established
through second order differential equations when the process is an Itô-diffusion or a second or-
der integro-differential-equation when the process is Lévy. Due to the nature of our problems,
informally speaking, we can define in this thesis a HJB equation as a finite number of inequal-
ities where the infinitesimal generator appears and characterizes the solution of our control
problem. The usual limitation of this approach is that too much smoothness is required for
these equations to make sense. Nevertheless in this thesis we do not have this problem as the
solutions are smooth enough.

2.5 Reflection on intervals

In this section we give the minimal theoretical framework necessary to work with a family
of processes where the optimal controls of our optimization problems are found. Due to the
nature of our problems, we will prove in this thesis that the best course of action is to choose
an adequate couple of barriers a ≤ b (the inequality always strict if the process has unbounded
variation) and prevent the process from leaving the set [a, b] with the minimal possible push.
One can get the idea of what we mean when the process is a compound Poisson process but
the definition is less intuitive when the process, for example, has unbounded variation.

Remark 2.5.1. The reader may notice that in the case where there is only one barrier we are
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talking about the local time.

2.5.1 Deterministic case

In this subsection D[0,∞) denotes the set of càdlàg functions mapping [0,∞) into R. The next
definition is adapted from [Kruk et. al. (2008)].

Definition 2.5.1. Let a < b be a pair of real numbers. The double Skorkhod map Γa,b is the
mapping from D[0,∞) into itself such that for ρ ∈ D[0,∞), Γa,b(ρ) takes values in [a, b] and
has the decomposition.

Γa,b(ρ) = ρ+ Ua,b −Da,b,

where Ua,b, Da,b ∈ D[0,∞) are non-decreasing and satisfy∫ ∞

0

(Γa,b(ρ)(t)− a)dUa,b
t = 0,

∫ ∞

0

(b− Γa,b(ρ)(t))dD
a,b
t = 0. (2.5)

Moreover, in t = 0 the functions Ua,b, Da,b project ρ(0) to the closest point in [a, b].

As one might expect, Skorokhod map with a one-sided reflection was posed before the double
Skorokhod map (see [Skorokhod (1961)]). We do not formalize this problem, as it is never used
in the thesis. Its definition is similar to the one above but the controlled function Γa takes
values in [a,∞), there is no function Da,b and in (2.5) there is only one equality (the one in the
left). Its explicit representation is

Γa(ρ)(t) = ρ(t) + sup
s∈[0,t]

(−ρ(s) + a)+. (2.6)

In [Kruk et. al. (2007)], the authors showed that the double Skorkhod map is well defined,
in the sense that for every ρ ∈ D[0,∞) there is a unique pair Ua,b, Da,b as the definition above.
Moreover it can be expressed in the following way:

Theorem 2.5.1. Given b > 0, the double Skorkhod map Γ0,b exists and is well defined. More-
over:

Γ0,b(t) = Λb ◦ Γ0(t),

where Γ0 is defined as in (2.6) and

Λb(φ)(t) = φ(t)− sup
s∈[0,t]

(
(φ(s)− b)+ ∧ inf

u∈[s,t]
φ(u)

)
.
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In [Kruk et. al. (2008), Theorem 2.1], the authors proved that the double Skorkhod map
can be expressed as:

Γ0,b(ρ)(t) = ρ(t)−max

(
(ρ(0)− b)+ ∧ inf

u∈[0,t]
ρ(u) , sup

s∈[0,t]

(
(ρ(s)− b)+ ∧ inf

u∈[s,t]
ρ(u)

))
.

Remark 2.5.2. This approach can be done path by path for Lévy processes due to its spatially
homogeneity.

2.5.2 Stochastic general framework

As it will be mentioned in some historical remarks, we proceed to define the reflection of a
stochastic process in an interval [a, b]. The underlying process is the strong solution of the
SDE:

dXt = dHt +

∫ t

0

f(Xs−)dZs, (2.7)

where Ht is an adapted process, Zt is an adapted semimartingale starting at zero and f is a
measurable function.

Definition 2.5.2. We say that Xa,b is the reflected process of X within the barriers a < b and
(Ua,b, Da,b) = ({Ua,b

t }t≥0, {Da,b
t }t≥0) are its reflecting controls if

(i) the process Xa,b
t ∈ [a, b] for all t ≥ 0 and is a strong solution of the SDE

dXa,b
t = dHt +

∫ t

0

f(Xa,b
s− )dZs + dUa,b

t − dDa,b
t ,

(ii) the processes U,D are increasing with Ua,b
0 = (a− x)+ and Da,b

0 = (x− b)+ and∫ ∞

0

(Xa,b
t − a)dUa,b

t = 0,

∫ ∞

0

(b−Xa,b
t )dDa,b

t = 0.

In the paper [Słomíski (1993)] the author gives conditions for the existence and uniqueness
of reflecting controls given a process (2.7) (in a multidimensional setting).

2.5.3 Itô-diffusion

When the underlying process is an Itô-diffusion, in [Lions and Sznitman (1984)] and then
[Saisho (1987)] for a more general domain, the authors gave conditions for the existence and
uniqueness of a reflected process in a domain D. We proceed to state the result for the par-
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ticular case D = [a, b] with a < b. From the fact that the next Theorem is a simplification of
[Lions and Sznitman (1984), Theorem 3.1], we prove it in the appendix, Theorem A.1.2.

Theorem 2.5.2. Assume that X is an Itô-diffusion, µ, σ are locally Lipschitz and a < b. Then
there is a unique pair (Ua,b, Da,b) = ({Ua,b

t }t≥0, {Da,b
t }t≥0) satisfying (i) and (ii) of Definition

2.5.2.

Finally, we postulate an ergodic theorem for real Itô-diffusions which will be useful in 3.
For a proof, see for example [Rogers and Williams (2000), Chapter V, Theorem 53.1].

Theorem 2.5.3. Suppose X is an Itô-diffusion and f a locally bounded measurable non negative
function, then

lim
T→∞

1

T

∫ T

0

f(Xa,b
s )ds =

∫ b

a

f(x)m′(x)dx, a.s.

This formula is our main weapon to pass from ergodic probabilistic problems to analytic
ones. For Lévy process we need to use different techniques.

2.5.4 Lévy processes

Due to the fact that it is spatially homogeneous, in Definition 2.5.2, Ht can be taken as the
null process, f as constant 1 and Zt as a Lévy process. Therefore, Ua,b, Da,b can be obtained
as in the deterministic case path by path. Some useful time dependant and ergodic properties
from [Andersen et al. (2015)] are used and explained in detail in Chapter 5, Section 5.6. As a
final remark, when the process has bounded variation it makes sense to define (U0,0, D0,0) and
there is a convergence, in L1 in the barriers, this will be proved in Chapter 5, Section 5.5.2.

2.6 Regenerative theory

We give some results of renewal theory that will be used for Lévy processes in Chapter 6.
Basically we are interested in processes that can be split into i.i.d cycles to study their ergodic
properties. In this thesis the cycle consists of the first time the lower barrier a is reached after
reaching the upper barrier b.

Definition 2.6.1. [Asmussen S. (2008), Chapter V, Section 1], Let 0 ≤ S0 ≤ S1 < S2 < . . . be
the times of occurrence of some phenomenon (in this thesis a stopping time) and Yn = Sn−Sn−1,
Y0 = S0. Then {Sn}n∈N (with the zero included) is called renewal process if Y0, Y1, . . . are
independent and Y1, Y2, . . . (but not necessarily Y0) have the same distribution.
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The following is an example of renewal process that will be used in Chapter 6 and it is
studied in Lemma A.2.3.

Lemma 2.6.1. Let X = {Xt}t≥0 be a Lévy process with finite mean such that X is not trivial,
is not a subordinator, nor the opposite of a subordinator. Let {τn}n be defined as:

τ0 = inf{t ≥ 0, X0,b
t = 0, sup

0≤s≤t
X0,b

s = b},

τn+1 = inf{t ≥ τn, X0,b
t = 0, sup

τn≤s≤t
X0,b

s = b}.

Then {τn}n∈N is a renewal process and E(τn) < ∞ for every n ∈ N.

Definition 2.6.2. [Asmussen S. (2008), Chapter VI, Section 3]
A real–valued process {Zt} is called cumulative if Z0 = 0 and there exists a renewal process

{Sn} such that for any n, {ZSn+t − ZSn} is independent of S0, S1, . . . , Sn and {Zt}t<Sn , and
for every t ≥ 0, n,m ∈ N: ZSn+t − ZSn = ZSm+t − ZSm in law.

Theorem 2.6.2. [Asmussen S. (2008), Chapter VI, Theorem 3.1] Suppose {Sn} is a renewal
process and Zt is an accumulative process. Moreover assume S0 = 0, E(S2−S1) < ∞, E|ZS1| <
∞. Then

lim
t→∞

Zt

t
=

E(ZS1)

E(S2 − S1)
a.s if and only if E

(
max

0≤t≤S1

|Zt|
)

< ∞.

2.7 Stochastic singular control problems

In this section we define the main problems that we are going to treat in chapters 3 and 5. In
order to see the analysis of some selected references, see the corresponding chapters. We are
concerned with finding the best policy for a long time average stochastic optimization singular
control problem. We treat the ergodic problem when the underlying process is an Itô-diffusion
and a Lévy process. We also treat the discounted problem when the underlying process is
Lévy and study the abelian limit. As usual, we work with a standard filtered probability
space (Ω,F ,F = {Ft}t≥0,Px) when the underlying stochastic process X = {Xt}t≥0 is a real
Itô-jump-diffusion with parameters (α, σ, γ, Ñ) .

Definition 2.7.1. An admissible control is a pair of non-negative {Ft}-adapted processes η =

(U = {Ut}t≥0, D = {Dt}t≥0) such that:

(i) Each process U,D is right-continuous and non-decreasing almost surely.

(ii) For each t ≥ 0 the random variables Ut and Dt have finite expectation.
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(iii) For every x ∈ R, the stochastic differential equation

dXU,D
t = µ(XU,D

t )dt+ σ(XU,D
t )dBt +

∫
Rn

γ(XU,D
t− , y)Ñ(ds× dy) + dUt − dDt,

XU,D(0) = x+ U0 −D0 ∈ R.

has a unique strong solution with no explosion in finite time.

We denote by A the set of admissible controls.

Definition 2.7.2. For a < b, when there is triad of processes Xa,b = {Xa,b
t }t≥0, (Ua,b, Da,b) =

({Ua,b
t }t≥0, {Da,b

t }t≥0) like the ones defined in 2.5.2 without finite explosion time, we say that
Xa,b, (Ua,b, Da,b) are an admissible reflected process (or just reflected process to keep it short)
in [a, b] and admissible reflecting control (or just reflecting control) respectively.

We proceed to briefly describe the control problems that are treated in the thesis, without
specifying most of the assumptions.

2.7.1 The ergodic problem

We are looking at an integral cost averaged over infinite time. The cost of the controls are
singular and constant and there is a running integral continuous cost c.

Definition 2.7.3. We define the ergodic value function as

G(x) = inf
η∈A

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds+ quUT + qdDT

)
,

where η = (U,D) ∈ A.

The objective is to find a pair a∗ ≤ b∗ such that (Ua∗,b∗ , Da∗,b∗) realizes the infimum over
all η ∈ A and to give a computable expression of G. This problem is treated in Chapter 3 for
Itô-diffusions and in Chapter 5 for Lévy processes.

2.7.2 The ϵ-discounted problem

In this case, there is a discount ϵ > 0 representing depreciation of value over time. The
ϵ-discounted value function G is defined as:

G(x) = inf
(U,D)∈A

Ex

(∫ ∞

0

e−ϵs
(
c(XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
.
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The objectives are the same as in the ergodic problem, plus studying the abelian limit. This is
done in Chapter 5 for Lévy processes.

2.8 Relationship with Dynkin games

For Itô-diffusions, the approach to solve the ergodic singular control problem is quite straight-
forward as the ergodic limit depends on m′ and S ′ (this is treated in Chapter 5). However this
is not the case for general Lévy processes. To keep it short, the probabilistic properties of the
reflecting control (Ua,b, Da,b) in both cases depend on:

Px(Xγ(a,b)c ≥ b), x ∈ R,

where γ(a,b)c is the first exit from the set (a, b) which is not known for every Lévy process. The
roadmap to solve singular control problems in this thesis for Lévy processes is:

• Define an auxiliary problem.

• Utilize its properties to prove that for the discounted singular control problem the value
Gϵ is reached in the set of reflecting controls and in some cases give the explicit values of
the barriers of the optimal controls.

• Prove that the abelian limit holds to deduce that the value G is also reached in the set
of reflecting controls.

The auxiliary problem is a Dynkin game.

Definition 2.8.1. [Peskir(2009), Ekström and Peskir(2008)] Let X = {Xt}t≥0 be a strong
Markov process, and let G1, G2 and G3 be continuous functions satisfying G1 ≤ G2 ≤ G3.
Consider a stopping game where the sup-player chooses a stopping time τ to maximize, and the
inf-player chooses a stopping time σ to minimize, the expected payoff

Mx(τ, σ) = Ex

(
G1(Xτ )1{τ<σ} +G2(Xσ)1{τ=σ} +G3(Xσ)1{τ>σ}

)
.

The Dynkin game is the problem consisting in finding two stopping times (τ ∗, σ∗) s.t.

Mx(τ, σ
∗) ≤ Mx(τ

∗, σ∗) ≤ Mx(τ
∗, σ), for all τ, σ stopping times,

which is equivalent to

sup
τ

inf
σ
Mx(τ, σ) = inf

σ
sup
τ

Mx(τ, σ) = Mx(τ
∗, σ∗).
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In our case X = (X, I, Z) with {Zt = r+ t}t≥0 and
{
It = w+

∫ t

0
e−ϵZsc′(Xs)ds

}
t≥0

and the
functions G1, G2 = G3 are defined as

G1(x,w, r) = w − que
−ϵr,

G2(x,w, r) = w + qde
−ϵr.

This Dynkin game is a particular case of [Stettner (1982)] , the properties used are based on
[Peskir(2009)] and [Ekström and Peskir(2008)]. Moreover, the relationship between two-sided
singular control problems and Dynkin games was first proved (under a different framework) in
[Karatzas and Wang (2003)]. The relationship boils down to the fact that the nature of this
Dynkin game, the functions τ ∗ and σ∗ are the first entry to a negative, respectively positive,
half line and their borders define a∗ and b∗. An analysis of this relationship is given in 5.1.

2.9 Mean field games for two-sided singular control

problems

We are also interested in giving our singular control problems a MFG component. The analysis
of the selected literature is in chapters 4 and 6. As mentioned in the introduction, the MFG
can be summarized as the limit when N → ∞ of an N player game where the objective is the
search of an equilibrium.

2.9.1 Itô-difusions

In this setting, we assume that the influence of the infinite pool of players affects the cost c

now depending in two variables, in the second one. The setting is the following:

• In search of equilibrium, we assume that the pool of players considers a reflecting control
(U c,d, Dc,d).

• Now the cost function is not of the form, c(Xa,b
t ) but c(Xa,b

t ,Ex(f(X
c,d))) (under reason-

able hypotheses).

• We are in the search of a pair of points a < b such that if a new player enters the market,
his/her most rational action is to imitate the actual pool of players.

• In other words, we are interested in giving conditions for the existence and uniqueness of
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a pair (a, b) such that

(Ua,b, Da,b) ∈ argmin
η=(U,D)∈A

{
lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
Xη

s ,Ex(f(X
a,b
s ))

)
ds+ quUT + qdDT

)}
.

• Finally, we define an adequate N -player game and study its convergence.

The study of the problem is analytic in nature, in other words, the equilibrium is charac-
terized as the root of an equation.

2.9.2 Lévy processes

In this case, we do not assume that the pool of players considers a reflecting strategy. We study
the MFGs associated to the discounted and ergodic case.

• We assume that the pool of players considers a control (Ũ , D̃) ∈ A such that the controlled
process X Ũ ,D̃ has compact support and converges in distribution to a stationary random
variable X Ũ ,D̃

∞ .

• Now the cost function is not of the form, c(Xa,b
t ) but c(Xa,b

t ,Ex(f(X
Ũ ,D̃
∞ ))) (under rea-

sonable hypotheses). Clearly, now the value and discounted value functions also depend
on one more variable.

• We are in search of a pair of points a ≤ b (the only case that a = b is possible, is the
ergodic one when the process has bounded variation) such that if a new player enters the
market, his/her most rational action is to imitate the actual pool of players.

• That is, for the discounted case, we want a pair a < b such that

Gϵ(x,Ex(f(X
a,b
∞ ))

= Ex

(∫ ∞

0

e−ϵs(c(XUa,b,Da,b

s ,Ex(f(X
a,b
∞ )))ds+ qudUs + qddDs

)
+ ua,b

0 qu + da,b0 qd,

and for the ergodic case, we want a pair a ≤ b such that

G(x,Ex(f(X
a,b
∞ )) = lim sup

T→∞

1

T
Ex

(∫ T

0

(c(XUa,b,Da,b

s ,Ex(f(X
a,b
∞ )))ds+ qudUs + qddDs

)
• We are also interested in the convergence (at least by taking a subsequence) in the abelian

sense of discounted equilibrium control to an ergodic equilibrium.

We give reasonable hypotheses to assure the existence of equilibrium points and characterize
them as an integro-differential equation. The main tool is to use the Brouwer fixed point The-
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orem in the adjoint Dynkin game and prove that the ϵ-discounted equilibrium points converge
(or at least have a convergent subsequence) to the ergodic equilibrium.
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Chapter 3

Two-sided ergodic control for
Itô-diffusions

Abstract
We treat the optimization problem mentioned in 2.7.1 for an Itô-diffusion. More precisely, we study
the problem [Alvarez(2018)], use a HJB equation as verification theorem and describe the solutions of
the problem as the unique pair of roots of a non-linear system.

We treat the problem posed in 2.7.1. That is, an ergodic two-sided control problem with
an underlying stochastic process X = {Xt}t≥0. In this chapter (Ω,F , {Ft}t≥0,P) is a filtered
probability space that satisfy the usual assumptions. The process X is an Itô-diffusion satisfying
the SDE:

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0. (3.1)

We refer to the more technical details in Section 3.2.
This chapter is organized as follows. In Section 3.1, we give some historical remarks and

motivations of the two-sided ergodic control problem. In Section 3.2, we postulate the prob-
lem [Alvarez(2018)] and make a resume of the first part of the article. In Section 3.4, we use
[Christensen et al. (2023)] to extend the results [Alvarez(2018)] to a more general class of con-
trols. Finally, Section 3.5 has examples when the underlying process is a Ornstein–Uhlenbeck
process and a Brownian motion with drift.

3.1 Introduction

In the two-sided ergodic control problem, we are looking at an integral cost averaged over
infinite time, thus rendering unimportant any initial finite action. These problems have ap-
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plications when sustainability is on play. To be more specific, with respect to applications
of singular control results, we mention studies focusing on cash flow management that investi-
gate optimal dividend distribution, recapitalization, or a combination of both, while considering
risk neutrality. See, for example, [Asmussen and Taksar (1997)], [Højgaard and Taksar (2001)],
[Jeanblanc-Picqué and Shiryaev (1995)], [Paulsen (2008)], [Peura and Keppo (2006)], and
[Shreve et al. (1984)]. Moreover, the ergodic model comes pretty handy in problems of finding
sustainable harvesting policies (see [Clark (2010), Chapter I]). As examples where a solution of
a free boundary problem defined by a HJB is used to solve ergodic control problems, we refer
to:

• [Karatzas (1983)] This is the first time that the two-sided ergodic control problem 2.7.1 is
posed. As an application, the author proposes that the controlled process can be thought
as a demand which has to be met or at least be close to a certain quantity. The underlying
process is a Brownian motion. Due to the nature of its infinitesimal generator the problem
is directly solved by studying the free boundary problem defined by the HJB equation.

• [Menaldi and Robin (1984)] In this article, the authors study an one-sided ergodic control
problem. Although it differs from the problems of study in this thesis, we remark that in
this problem the underlying process is an one-dimensional diffusion satisfying (3.2) (under
the appropriate hypothesis). Again, due to the nature of the infinitesimal generator, the
ergodic problem is solved quite directly.

• [Weerasinghe (2002)] In this article, the author treats a two-sided problem for a specific
family of continuous diffusions. The main structural differences with [Alvarez(2018)] are
that the family of processes that they study follow the SDE :

dXU,D
t = µ(t)dt+σ(t)dWt+dUt−dDt, X0 = x0, U,D increasing adapted processes

and the optimization is not only on the processes U,D but also on the drift and volatility
(obviously under a restricted family of functios). Moreover, the cost function is under
different assumptions. The procedure is again to formulate a verification theorem and by
analytic arguments show that there is a candidate.

• [Jack and Zervos (2006)] In this article the authors study a two-sided problem with an
underlying diffusion. It is remarkable that the costs of the controls, although bounded by
a constant, are not constant. Due to its more general approach, the assumptions given for
the diffusion and the cost are more restrictive and the the existence of optimal controls
is not expressed explicitly.

• [Weerasinghe (2007)] In this article the main tool to solve the ergodic two-sided control
problem is to solve a discounted problem similar to 2.7.2 and use the Abelian limit. We
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also remark that the author postulates a restrained optimization problem in the sense
that there is a constant m such that the controls must satisfy

lim sup
T→∞

1

T
E(Ut +Dt) ≤ m,

and shows that there is a m∗ for the restriction such that the ergodic problem is equivalent
to the ergodic restrained problem. Furthermore the author shows that depending on the
assumptions, it might be optimal to not control the process.

• [Menaldi and Robin (2013)] In this work, the underlying process is a multidimensional
Gaussian Process added to a Compound Poisson process. The authors use the abelian
limit to show that there exists an optimal control. The proofs and further extensions were
left for future works.

• [Wu and Chen (2017)] In this work the authors study a n-dimensional Brownian motion.
Due to the nature of the infinitesimal generator of the Brownian motion and the symmetric
assumptions on the cost functional, the study of the problem is radial.

• [Arapostathis et al. (2019)] In this article, the controls are a set of parameters on a com-
pact set that affect the drift. Although our techniques and framework greatly differs from
the problems studied in this thesis we wanted to mention this paper because the under-
lying process is a jump-diffusion. The main objectives are to prove the existence and in
some cases the uniqueness of the solution.

• [Kunwai et al. (2022)] The authors work here with a diffusion satisfying the SDE (3.2)
(under certain hypothesis for µ and σ). The problem proposed is similar to the one in this
chapter, the structural difference lies in the fact that one of the controls has a "negative
cost" (a reward).

3.2 Framework for the Ergodic Control problem

In this Section we give the framework for our ergodic two-sided control problem which is based
on [Alvarez(2018)] and [Christensen et al. (2023)].

3.2.1 Itô-diffusion

Let us consider a filtered probability space (Ω,F ,F = {Ft}t≥0,P) that satisfies the usual
assumptions. In order to define the underlying diffusion, consider the functions µ : R → R and
σ : R → (0,∞) assumed to be locally Lipschitz. Under these conditions, as mentioned in 2.2.3,
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the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x (3.2)

has a unique strong solution up to an explosion time, that we denote X = {Xt : t ≥ 0}
(see [Protter (2005), Theorem V.38]). Observe that our framework includes quadratic coeffi-
cients. Alternatively, our results can be formulated in the framework of weak solutions as in
[Alvarez(2018)]. As usual, we define the infinitesimal generator of the process X as

LX =
1

2
σ2(x)

d2

d2x
+ µ(x)

d

dx
.

For more details, see Section 2.4. As in Definition 2.2.10, we denote the density of the scale
function S(x) w.r.t the Lebesgue measure as

S ′(x) = exp

(
−
∫ x 2µ(u)

σ2(u)
du

)
,

and the density of the speed measure m(x) w.r.t the Lebesgue measure as

m′(x) =
2

σ2(x)S ′(x)
.

As mentioned above, the underlying process is controlled by a pair of processes, the admissible
controls, that drive it to a convenient region. As in Definition 2.7.1, we define admissible
control and use the same notations for η = (U = {Ut}t≥0, D = {Dt}t≥0), {Xη} and the set A.
Nevertheless we rewrite its definition for this particular calss of processes.

Definition 3.2.1. An admissible control is a pair of non-negative F-adapted processes η =

(U = {Ut}t≥0, D = {Dt}t≥0) such that:

(i) Each process U,D is right-continuous and non decreasing almost surely.

(ii) For each t ≥ 0 the random variables Ut and Dt have finite expectation.

(iii) For every x ∈ R the stochastic differential equation

dXη
t := µ(Xη

t )dt+ σ(Xη
t )dWt + dUt − dDt, X0 = x (3.3)

has a unique strong solution with no explosion in finite time.

We denote by A the set of admissible control.

Note that condition (iii) is satisfied, for instance, when the coefficients are globally Lipschitz.
(See the remark after Theorem V.38 in [Protter (2005)]). Observe also that condition (ii) is
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not a real restriction, as, for instance, the integral in the cost function G(x) in (3.6) that we
aim to minimize, in case of having infinite expectations, is infinite.

A relevant sub-class of admissible controls is the set of reflecting controls. For the sake of
clarity, we rewrite the definition of reflecting controls given in 2.5.3.

Definition 3.2.2. For a < b denote by Xa,b = {Xa,b
t : t ≥ 0} the strong solution of the stochastic

differential equation with reflecting boundaries at a and b:

dXa,b
t = µ(Xa,b

t )dt+ σ(Xa,b
t )dWt + dUa,b

t − dDa,b
t , X0 = x.

Here Ua,b = {Ua,b
t }, Da,b = {Da,b

t }, are the local times of the reflected diffusion in the interval
[a, b]. They are continuous non-decreasing processes that increase, respectively, only when the
solution visits a or b and make the controlled diffusion satisfy the condition a ≤ Xa,b

t ≤ b, a.s.
for all t ≥ 0. As the above equation has a strong solution (see [Lions and Sznitman (1984),
Theorem 3.1] or [Saisho (1987), Theorem 5.1]), the pair (Ua,b, Da,b), (a, b) belongs to A, R2

respectively, we call them reflecting controls and reflecting barriers respectively. If x /∈ (a, b),
we begin the policy by sending the process to the closest point of the interval [a, b] at time t = 0.

3.2.2 Cost function

We introduce below the cost function c(x) to be considered in the optimization problem.

Assumption 3.2.1. Assume that c : R → R+ is a continuous function, and the positive con-
stants qu, qd are the unit cost of using the associated controls. Assume that, there exist a value
xm such that

c(x) ≥ c(xm) ≥ 0, for all x ∈ R,

and constants K ≥ 0 and α > 0 such that

c(x) +K ≥ α|x|, for all x ∈ R. (3.4)

Consider the maps

π1(x) = c(x) + qdµ(x), π2(x) = c(x)− quµ(x),

and assume:

(i) There exists a unique real number x0
i = argmin{πi(x) : x ∈ R} so that πi(·) is decreasing

on (−∞, x0
i ) and increasing on (x0

i ,∞), where i = 1, 2.
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(ii) The following limits hold:

lim
x→∞

π1(x) = lim
x→−∞

π2(x) = ∞. (3.5)

Definition 3.2.3. We define the ergodic value function as

G(x) = inf
η∈A

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds+ quUT + qdDT

)
, (3.6)

where η = (U,D) is an admissible control in A.

3.3 Optimality within reflecting controls

The existence of the unique pair of optimal controls within the class of reflecting controls was
obtained by [Alvarez(2018)], we extract the result (with some changes in the notations but
most importantly we add the condition (3.4)) and its proof from the article as it illustrates how
to find optimal controls in similar frameworks when the underlying process is an Itô diffusion.
It is noticeable, due to the nature of the underlying processes in this chapter, that the ergodic
limit has an explicit expression. We remark that all of this section is extracted from the
aforementioned paper.

3.3.1 Conditions for optimal barriers

To proceed, first, the author studied the ergodic limit within the class of reflecting controls and
secondly he made an analytic study of the obtained expression to find its minimum.

Lemma 3.3.1. Under Assumption 3.2.1, If a < b then:

lim
T→∞

1

T
Ex

(∫ T

0

c(Xa,b
s )ds+ quU

a,b
T + qdD

a,b
T

)
=

1

m(a, b)

[∫ b

a

c(u)m(du) +
qu

S ′(a)
+

qd
S ′(b)

]
=: C(a, b).

Proof. Let f ∈ C2(R) be an arbitrary twice continuously differentiable function and let x ∈
[a, b]. Applying Doléans-Dade-Meyer change of variable formula (or Itô formula and using the
linearity in the stochastic integrands) to the function f we obtain:

f(Xa,b
T ) = f(x) +

∫ T

0

(Lf)(Xa,b
s )ds+

∫ T

0

σ(Xa,b
s )dWs + f ′(a)Ua,b

T − f ′(b)Da,b
T .
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Since Xa,b
t is continuous in [a, b] and the processes Ua,b

t , Da,b
t increase only at the boundaries a

and b respectively, by taking expectation and reordering the terms, we get

Ex(f(X
a,b
T )− f(x)) = Ex

(∫ b

a

(Lf)(Xa,b
s )ds+ f ′(a)Ua,b

T − f ′(b)Da,b
T

)
. (3.7)

Dividing by T , taking the limit T → ∞ and using Theorem 2.5.3 we get

0 =

∫ b

a

(Lf)(t) m′(t)

m(a, b)
ds+ lim

T→∞
E
(
f ′(a)Ua,b

T − f ′(b)Da,b
T

)
.

On the other hand, from we definition of S ′(x) we have(
f ′(t)

S ′(t)

)′

=
f ′′(t)

S ′(t)
+

2µ(t)f ′(t)

σ2(t)
= (Lf)(t)m′(t).

Thus equation (3.7) can be rewritten as:

0 =
f ′(b)

S ′(b)
− f ′(a)

S ′(a)
+ lim

T→∞
E
(
f ′(a)Ua,b

T − f ′(b)Da,b
T

)
.

Due to the fact f is an arbitrary twice continuously differentiable function we deduce

1

S ′(a)
= lim

T→∞
E
(
Ua,b
T

)
,

1

S ′(b)
= lim

T→∞
E
(
Da,b

T

)
. (3.8)

Finally, applying Theorem 2.5.3 and equation (3.8) we conclude the Lemma.

We proceed to characterize the optimal reflecting control, by differentiation and using the
equality ∫ b

a

µ(t)m′(t)dt =
1

S ′(a)
− 1

S ′(b)
, (3.9)

we deduce the next Corollary.

Corollary 3.3.2. If a pair a∗ < b∗ of boundaries minimizing the expected long-run average
cumulative costs exist, it has to satisfy the ordinary first order conditions

C(a∗, b∗) = π2(a
∗) = π1(b

∗), (3.10)

which can be re-expressed as

(i) I1(a
∗, b∗) :=

∫ b∗

a∗
(π1(t)− π1(b

∗))m′(t)dt+
qu + qd
S ′(a∗)

= 0,
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(ii) I2(a
∗, b∗) :=

∫ b∗

a∗
(π2(t)− π2(a

∗))m′(t)dt+
qu + qd
S ′(b∗)

= 0.

Theorem 3.3.3. The optimality conditions of Corollary 3.3.2 have a uniquely determined
solution (a∗, b∗) ∈ (−∞, x0

2)× (x0
1,∞).

Proof. First of all, due to 3.2.1 (i), notice that the items (i) and (ii) of Corollary 3.3.2 are not
zero if b∗ ≤ x0

1, a∗ ≥ x0
2 respectively. Second, by observing

I1(a, b)− I2(a, b) = m(a, b)(π2(a)− π1(b)),

we deduce that proving (i) and (ii) is equivalent to proving (i) and the property

π2(a
∗) = π1(b

∗). (3.11)

On the other hand, due to the fact π2, π1 are monotone in (−∞, x0
2], [x

0
1,∞) respectively and

unbounded above if we restrict their domains to these half-lines, we deduce that there is a half
line (−∞, â] ⊂ (−∞, x0

2] such that for every a ≤ â there is an unique ba such that π1(ba) =

π2(a). In order to establish the sets where ba is well-defined, consider first the case where
x0
1 ≥ x0

2. If π1(x
0
1) ≥ π2(x

0
2) then our assumptions guarantee that there is a unique threshold

â = {x ∈ (−∞, x0
2]} so that ba is well-defined for all a ≤ â. Analogously, if π1(x

0
1) ≤ π2(x

0
2),

then the function ba is well-defined for all a ≤ x0
2. Consider now instead the case where x0

1 ≤ x0
2.

It is then clear that our assumptions guarantee that if π(x0
1) ≥ π2(x

0
1) then we again oserve

that ba is well-defined for all a ≤ â. If π2(x
0
2) ≥ π1(x

0
1), then ba is well-defined for all a ≤ x0

2.
Finally, if either π2(x

0
1) ≥ π1(x

0
1) ≥ π2(x

0
2) or π1(x

0
2) ≥ π2(x

0
2) ≥ π1(x

0
1), then there is a unique

intersection point x̂ ∈ [x0
1, x

0
2] at which π1(x̂) = π2(x̂) and ba is well-defined for all a ≤ x̂ and

satisfies the condition bx̂ = x̂. In fact, due to the continuity and monotonocity of the functions
the map

a → ba, a ∈ (−∞, â], (3.12)

is continuous. Then, by equation (3.11) we deduce it is enough to prove that the function

g : (−∞, â] → R, g(a) =

∫ ba

a

(π1(t)− π1(ba))m
′(t)dt+

qd + qu
S ′(a)

, (3.13)

has an unique root. Observe, due to equation (3.9), the function g is can be rewritten as:

g(a) =

∫ ba

a

π1(t)m
′(t)dt− π1(ba)m(a, b) +

qd
S ′(ba)

+
qu

S ′(a)
.

We now plan to prove that g(a) > 0 at the upper boundary where ba is defined. Consider first
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the case where π1(x
0
1) ≥ π2(x

0
2). Utilizing (3.11) shows

g(a) =

∫ x0
1

â

c(t)m′(t)dt− π1(x
0
1)m(â, x0

1) +
qd

S ′(x0
1)

+
qu

S ′(â)

=

∫ x0
1

â

π1(t)m
′(t)dt− π1(x

0
1)m(â, x0

1) +
qd + qu
S ′(â)

,

since x0
1 = argmin(π1(x)). Consider now the case either x0

1 ≥ x0
2 and π1(x

0
1) ≤ π2(x

0
2) or x0

1 ≤ x0
2

and π1(x
0
2) ≤ π2(x

0
2). In those cases we find that

g(x0
2) =

∫ b
x02

x0
2

c(t)m′(t)dt− π1(bx0
2
)m(x0

2, bx0
2
) +

qd
S ′(bx0

2
)
+

qu
S ′(x0

2)

=

∫ b
x02

x0
2

π2(t)m
′(t)dt− π2(x

0
2)m(x0

2, bx0
2
) +

qd + qu
S ′(bx0

2
)
> 0,

since x0
2 = argmin(π2(x)). Finally if x0

1 ≤ x0
2 and either π2(x

0
1) ≥ π1(x

0
1) ≥ π2(x

0
2) or π1(x

0
2) ≥

π2(x
0
2) ≥ π1(x

0
1) holds, then

g(x̂) =
qd + qu
S ′(x̂)

> 0,

proving the alleged positivity of g(a) at the upper boundary of the set where ba is defined.
We now plan to establish that equation g(a) = 0 has a unique root on (−∞, x0

2] by establishing
that g(a) is monotonically increasing on its domain and tends to −∞ as a → −∞. To this
end, assume that a1 < a2 and, therefore, that b1 > b2, where bi := bai , i = 1, 2. Utilizing the
definition of the function g, as well as the identities (3.11) and π2(ai) = π1(bi), i = 1, 2 yields

g(a2)− g(a1) =

∫ a2

a1

(π2(a1)− π2(t))m
′(t)dt+

∫ b1

b2

(π1(b1)− π1(t))m
′(t)dt

+ (π2(a1)− π2(a2))m(a2, b2) > 0,

demonstrating that g(a) is monotonically increasing. Moreover, since

g(a2)− g(a1) > (π2(a1)− π2(a2))m(a2, b2) → ∞

as a1 → −∞ we notice that lima1→−∞ g(a1) = −∞. Combining this observation with the
monotonicity and continuity of g and the positivity of g at the upper boundary of its domain
demonstrates that the equation g(a) = 0 has a unique root a∗ ∈ (−∞, x0

2]. Moreover, since
g(a∗) = I1(a

∗, b∗) = I2(a
∗, b∗) = 0, where b∗ = ba∗ , we find that the pair (a∗, b∗) constitutes the

unique root of the optimality conditions (i) and (ii) of Corollary 3.3.2.
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3.3.2 Adjoint free boundary problem, existence and uniqueness of

optimal reflecting controls

As seen in the introduction of this chapter, in the search of optimal controls, a free boundary
problem arises naturally in the form of a HJB equation. Our objective is now to determine the
twice continuously differentiable function u : R → R+ as well as the two boundaries a < 0 < b

and the parameter λ > 0 solving the free boundary problem:

(Lu)(x) + c(x) = λ, x ∈ (a, b),

u(x) = qd(x− b) + u(b), x ≥ b,

u(x) = qu(a− x) + u(a), x ≤ a. (3.14)

We find by integrating over the interval (a, b) and invoking the boundary conditions u′(a) =

−qu, v′(b) = qd that

λm(a, b)−
∫ b

a

c(x)m′(x)dx =

∫ b

a

(Lu)(x)m′(x)dx =
qd

S ′(b)
+

qu
S ′(a)

.

Consequently

λ =
1

m(a, b)

(∫ b

a

c(x)m′(x)dx+
qd

S ′(b)
+

qu
S ′(a)

)
. (3.15)

Finally, imposing the conditions v′′(a) = v′′(b) = 0 guaranteeing the second order differentia-
bility of the value across the boundaries implies that

λ = c(b) + qdµ(b) = c(a)− quµ(a). (3.16)

We observe these conditions coincide with the ones in equation 3.11. Moreover for the unique
values (a∗, b∗) defined in Theorem 3.3.3 we define

λ∗ := C(a∗, b∗) = π1(b
∗) = π2(a

∗). (3.17)

We can study more properties of the function u defined in the free boundary problem that
will be useful in the next Section to prove that the class of reflecting controls reach a global
minimum in a wider class of controls.

Proposition 3.3.4. For the pair (a∗, b∗) defined in Theorem 3.3.3 and λ∗ in (3.17) the adjoint
function u defined in the free boundary problem satisfies −qu ≤ u′(x) ≤ qd for all x ∈ R.
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Proof. It is clear that is enough to prove that −qu ≤ u′(x) ≤ qd on (a∗, b∗). First notice

(((Lu)(x)− qdµ(x))m
′(x))

′
=

v′(x)− qd
S ′(x)

.

Second, we obtain by invoking the boundary condition u′(b∗) = qd, and λ∗ = π1(b
∗) that

u′(x)− qd
S ′(x)

=

∫ b∗

x

(π1(t)− π1(b
∗))m′(t)dt.

We first prove that the integral in this expression is non-positive on [a∗, b∗]. To see that this
is indeed true, we first notice that if limx→−∞ π1(x) ≤ π1(b

∗), then the integrand is always
non-positive proving the statement in that case. If, however, limx→−∞ π1(x) > π1(b

∗), then our
assumptions on the function π1 guarantee that there exists a uniquely defined state y1 = {x <

x0
1 : π1(x) = π1(b

∗)}. However, since the integrand is non-positive for all y ∈ [y1, b
∗] and the

integral is non-increasing for a∗ ≤ x ≤ max(a∗, y1) and (i) of Corollary 3.3.2, we notice that
the integral is non-positive in that case as well. In order to complete the proof it is sufficient
to show that

u′(x)− qd
S ′(x)

≥ −qu + qd
S ′(x)

(3.18)

for all x ∈ [a∗, b∗]. To this end consider now the function

D(x) =

∫ b∗

x

(π1(t)− π1(b
∗))m′(t)dt+

qu + qd
S ′(x)

.

It is clear that D(a∗) = 0, D(b∗) = qu+qd
S′(b∗)

> 0, and D′(x) = (π1(b
∗)− π2(x))m

′(x) = (π2(a
∗)−

π2(x))m
′(x). Two cases arise. If limx→∞ π2(x) ≤ π2(a

∗), then D′(x) ≥ 0 for all x ∈ [a∗, b∗]

and we are done. If, however, limx→∞ π2(x) > π2(a
∗), then D′(x) ≥ 0 for all x ∈ [a∗, y2] and

D′(x) < 0 for all x > y2 where y2 = {x > x0
2 : π2(x) = π2(a

∗)}. Consequently, we notice that
D(x) ≥ 0 for all x ∈ [a∗, b∗] in that case as well, completing the proof of our theorem.

Finally, we are ready to prove that the conditions in Theorem 3.3.3 gives a unique optimal
reflecting policy and the infimum of the function C(a, b) does not depends on the initial value
of the process X and is equal to λ∗ defined in (3.17).

Theorem 3.3.5. The pair (a∗, b∗) ∈ (−∞, x0
2) × (x0

1,∞) is a global minimum on C(a, b) and
C(a, b) ≥ C(a∗, b∗) for all −∞ < a < b < ∞. Consequently, λ ≥ λ∗ for all −∞ < a < b < ∞
and ηa

∗,b∗ := (Ua∗,b∗ , Da∗,b∗) constitutes an optimal singular control within the considered class
of reflection controls
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Proof. Let us first investigate the behavior of the function I1(a, b). If b2 > b1 > a, then

I1(a, b1)− I1(a, b2) = (π1(b2)− π1(b1))m(a, b1) +

∫ b2

b1

(π1(b2)− π1(t))m
′(t)dt.

It is now clear form our assumptions on π1 that I1(a, b) is increasing on (−∞, x0
1) and de-

creasing on (x0
1,∞) as a function of b. Moreover, if b2 > b1 ≥ x0

1, then I1(a, b1) − I2(a, b2) >

(π1(b2)− π1(b1))m(a, b1) → ∞ as b2 → ∞. Consequently, limb→∞ I1(a, b) = −∞ for all a ∈ R.
Combining these observation with the identity I1(a, a) = qu+qd

S′(a)
> 0 implies that I1(a, b) = 0

has a unique root b̂a for any a ∈ R and I1(a, b) has the same sign as the function (b̂a − b).
Establishing now that I2(a, b) is increasing on (−∞, x0

2), decreasing on (x0
2,∞) as a function of

a and satisfies lima→∞ I2(a, b) = −∞ for all b ∈ R is completely analogous. Consequently, we
notice that I2(a, b) = 0 has a unique root âb for any b ∈ R and I2(a, b) has the same sign as the
function (a − âb). Combining these observations with the uniqueness of the pair (a∗, b∗) and
Corollary 3.3.2 completes the proof of the first claim of our Theorem. The second statement
then follow directly from Lemma 3.3.1.

Remark 3.3.1. We have proved the existence and uniqueness of an optimal control in the set
of reflecting controls defined as a root of a non-linear system of two equations (Theorems 3.3.3
and 3.3.5). Moreover we have a relationship between a free boundary problem and infimum
value between the reflecting policies (see equation (3.15)). These are the results of the paper
[Alvarez(2018)] that we will use but we remark that in the article the author also studied how
increasing the volatility expands the interval (a∗, b∗) when the process has no drift.

What is left to do is to prove that the optimal reflecting controls are in fact optimal within
the class A defined in 3.2.1, we do this in the next Section, using the classical approach of
postulating a verification theorem with the free boundary problem.

3.4 Optimality within admissible controls

In this Section we work with a wider class of controls, that is, we work with the set A defined in
Definition 3.2.1. Optimality within the class A of càdlàg controls requires further analysis. As
expected, and mentioned in [Alvarez(2018)], the optimal controls within class A are the same
controls found in the class of reflecting controls. More precisely, it is clear that

inf
a<b

lim
T→∞

1

T
Ex

(∫ T

0

c(Xa,b
s )ds+ quU

b
T + qdD

a
T

)
≥ G(x).

Then, to establish the optimality within A it is necessary to obtain the other inequality.
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Theorem 3.4.1 (Verification). Consider a diffusion defined by (3.2) and a cost function c

satisfying Assumption 3.2.1. Suppose that there exist a constant λ ≥ 0 and a function u ∈ C2(R)
such that

(LXu)(x) + c(x) ≥ λ, −qu ≤ u′(x) ≤ qd, for all x ∈ R. (3.19)

Define the subset of admissible controls

B =

{
η ∈ A : lim inf

T→∞

1

T
|Ex(u(X

η
T ))| = 0

}
. (3.20)

Then,

inf
η∈B

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds+ quUT + qdDT

)
≥ λ. (3.21)

Remark 3.4.1. The consideration of the subclass B is not a restriction, as will be seen below.
More precisely, it will be proved (using condition (3.4)), that controls in A \ B give infinite
values.

Proof. Fix T > 0. For each n ≥ 1 define the stopping times

Tn = inf{t ≥ 0: |Xη
t | ≥ n} ∧ T ↗ T a.s.

Using Itô formula for processes with jumps (observe that the diffusion X is continuous but the
controls can have jumps, and in consequence the controlled processes Xη can have jumps),

u(Xη(Tn)) = u(x) +

∫ Tn

0

u′(Xη
s−)dX

η
s +

1

2

∫ Tn

0

u′′(Xη
s−)d⟨(Xη)c, (Xη)c⟩s

+
∑
s≤Tn

(u(Xη
s )− u(Xη

s−)− u′(Xη
s−)△Xη

s ) . (3.22)

The r.h.s in (3.22) can be rewritten as

u(x) +

∫ Tn

0

(LXu)(X
η
s−)ds−

∫ Tn

0

µ(Xη
s−)u

′(Xη
s−)ds

+

∫ Tn

0

u′(Xη
s−)dX

η
s +

∑
s≤Tn

(u(Xη
s )− u(Xη

s−)− u′(Xη
s−)△Xη

s ) . (3.23)

Using the fact that u′(Xη
s−) = u′(Xη

s ) in a set of total Lebesgue measure in [0, T ] almost surely,
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and that △Xη
s = △Us −△Ds, we rewrite (3.23) as

u(x) +

∫ Tn

0

(LXu)(X
η
s−)ds+

∫ Tn

0

u′(Xη
s−)σ(X

η
s−)dWs

+

∫ Tn

0

u′(Xη
s−)d(Us −Ds)

+
∑
s≤Tn

(u(Xη
s )− u(Xη

s−)− u′(Xη
s−)(△Us −△Ds)) . (3.24)

Therefore, denoting by U c
s and Dc

s the continuous parts of the processes Us and Ds respectively,
and using the inequalities (3.19) in the hypothesis, we obtain

u(Xη(Tn)) ≥ u(x) + λTn −
∫ Tn

0

c(Xη
s−)ds+

∫ Tn

0

u′(Xη
s−)σ(X

η
s−)dWs

−
∫ Tn

0

qudU
c
s −

∫ Tn

0

qddD
c
s −

∑
0≤s≤Tn

(△Usqu +△Dsqd)

= u(x) + λTn −
∫ Tn

0

c(Xη
s−)ds+

∫ Tn

0

u′(Xη
s−)σ(X

η
s−)dWs

− quUTn − qdDTn .

Rearranging the terms above and taking the expectation we obtain

Ex(u(X
η(Tn)))− u(x) + Ex

(∫ Tn

0

c(Xη
s−)ds+ quUTn + qdDTn

)
≥ λEx(Tn).

Taking first limit as n tends to infinity, dividing then by T , and finally taking lim inf as T goes
to infinity we obtain (3.21) concluding the proof of the verification theorem.

We now use the free boundary problem defined in (3.14) to conclude this section

Theorem 3.4.2. Consider a diffusion defined by (3.2) and a cost function c satisfying As-
sumption 3.2.1. Then, the reflecting controls with levels given in in Theorem 3.3.5 minimize
the ergodic value G in (3.6) within the set A of admissible controls.

Proof. Take u as the solution of the free boundary problem (3.14). In view of Theorem 3.4.1,
we need to prove that the infimum of the ergodic value defining G(x) is realized in the set B.
Take then η ∈ A \ B. By definition of B, there exist constants ϵ > 0 and S > 0 such that

Exu(X
η
s ) > ϵs, for all s ≥ S. (3.25)

49



The second statement in (3.19) implies that |u(x)− u(0)| ≤ (qu + qd)|x|. From this, it follows

c(x) ≥ Au(x)−B,

for A = α/(qu + qd) and B = αu(0)/(qu + qd) +K, see (3.4). In view of (3.25), this implies

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds

)
≥ lim sup

T→∞

1

T

∫ T

S

(Aϵs−B)ds = ∞.

As a consequence, for any η ∈ A \ B, we have

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xη
s )ds+ quUT + qdDT

)
= ∞.

Finally, as the class of reflecting controls gives finite ergodic limits by Lemma 3.7, the infimum
can be taken in the subclass B. So Theorem 3.4.1 gives the equality G(x) = λ = C(a, b) (see
Theorem 3.3.5), concluding the proof.

3.5 Examples

We present some examples that are solved by using Theorem 3.3.5. We remark that the
examples are similar to the ones showed in [Alvarez(2018)].

3.5.1 Orstein–Uhlenbeck process

The cost function now has the form

c(x) = max(−αx, x), α > 0, (3.26)

We consider a mean reverting process that follows the stochastic differential equation

dXt = −θXtdt+ σdWt, σ, θ > 0. (3.27)

To satisfy Assumptions 3.2.1 , we add the restrictions qdθ < 1 and quθ < α and take x0
1, x

0
2 = 0.

In this case
S ′(x) = e

θx2

σ2 , m′(x) =
2

σ2
e

−θx2

σ2 ,
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and the function a → ba defined in (3.12) is

ba = a

(
−α + quθ

1− qdθ

)
. (3.28)

Using the Corollary 3.3.2 we deduce that what is left to do is to find a root a∗ of the function

I2(a, ba) =

∫ ba

a

(π2(t)− π2(a))m
′(t)dt+

qu + qd
S ′(ba)

, a ∈ (−∞, 0]

We separate in terms:∫ ba

a

π2(t)m
′(t)dt =

∫ 0

a

2t(−α + quθ)

σ2
e

−θt2

σ2 dt+

∫ ba

0

2t(1 + quθ)

σ2
e

−θt2

σ2 dt

=

∫ 0

a2

σ2

(−α + quθ)e
−θudu+

∫ b2a
σ2

0

(1 + quθ)e
−θudu

=
1

θ

(
(−α + quθ)(e

−θ a2

σ2 − 1) + (1 + quθ)(1− e−θ
b2a
σ2 )

)
. (3.29)

On the other hand:∫ ba

a

−π2(a)m
′(t)dt+

qu + qd
S ′(ba)

= a(α− quθ)

√
π

σ2θ

(
erf

(√
θ

σ2
ba

)
− erf

(√
θ

σ2
a

))
+ (qu + qd)e

−θb2a
σ2 . (3.30)

From equations (3.28), (3.30) and (3.30) we deduce the barriers (a∗, b∗) ∈ (−∞, 0) × (0,∞)

that define the optimal control are defined by the equations:

1

θ

(
(−α + quθ)(e

−θ
(a∗)2

σ2 − 1) + (1 + quθ)(1− e−θ
(b∗)2

σ2 )

)
+ a∗(α− quθ)

√
π

σ2θ

(
erf

(√
θ

σ2
b∗

)
− erf

(√
θ

σ2
a∗

))
+ (qu + qd)e

−θ(b∗)2

σ2 = 0.

and
b∗ = a∗

(
−α + quθ

1− qdθ

)
.

Moreover using (3.17), we get G(x) = λ∗ is equal to a∗(−α + quθ). For example if we take the
parameters θ = 0.1, α = 2, σ = 3, qu = 3, qd = 1, we get a∗ = −3.100, b∗ = 5.856, λ∗ = 5.270.
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3.5.2 Brownian motion with drift

We present an easier to compute example to give a more explicit representation of the optimal
reflecting control. The cost function now is c(x) = |x|. The underlying process is a Brownian
motion with drift µ and volatility σ ̸= 0, thus

dXt = µt+ σdWt, {Wt}t≥0 a standard Brownian motion.

Assumptions 3.2.1 , are satisfied automatically by taking x0
1, x

0
2 = 0. First, we assume µ ̸= 0.

In this case
S ′(x) = e

−2µx

σ2 , m′(x) =
2

σ2
e

2µx

σ2 ,

and the function a → ba defined in (3.12) is

ba = −a− µ(qu + qd). (3.31)

Again, from Corollary 3.3.2 we need to find the root of the function I2(a, ba), a ∈ (−∞, 0). In
this case the equation to solve is

I2(a, ba) =

∫ ba

a

2

σ2 (|t|+ a) e
2µt

σ2 dt+ (qu + qd)e
2µba
σ2 = 0. (3.32)

We proceed with the calculations and rewrite the integral:

∫ 0

a

− 2

σ2 te
2µt

σ2 dt+

∫ ba

0

2

σ2 te
2µt

σ2 dt+
a(e

2µba
σ2 − e

2µa

σ2 )

µ
+ (qu + qd)e

2µba
σ2 = 0.

By substitution, we get:

− 1

µ

∫ 0

2µa

σ2

ueudu+
1

µ

∫ 2µba
σ2

0

ueudu+
a(e

2µba
σ2 − e

2µa

σ2 )

µ
+ (qu + qd)e

2µba
σ2 = 0.

Taking primitives:

1

µ

(
2 + e

2µa

σ2

(
2µa

σ2
− 1

)
+ e

2µba
σ2

(
2µba
σ2

− 1

))
+

a(e
2µba
σ2 − e

2µa

σ2 )

µ
+ (qu + qd)e

2µba
σ2 = 0.

Multiplying the equation by µ and using (3.31), we deduce equation (3.32) is equivalent to
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e
2µa

σ2

(
2µa

σ2
− 1− a

)
+ e

2µ

σ2 (−a−µ(qu+qd))

(
2µ(−a− µ(qu + qd))

σ2
− 1 + a+ µ(qu + qd)

)
+ 2 = 0.

(3.33)
With equations (3.17), (3.31) and (3.33) the problem is characterized as a root of a function of
one variable. For example, when σ = 2, µ = −1, qu = 0.4, qd = 0.6 we get a∗ = −0.417, b∗ =

1.417, λ∗ = 0.817.
In the case µ = 0, by standard integration we obtain

−a∗ = b∗ = λ∗ =

√
(qu + qd)σ2

2
.

For this case, denoting K := qu + qd, we present a graph of the function

λ(σ,K) =

√
(qu + qd)σ2

2
.

1

1The graph was made with the software Geogebra, see [Geogebra (2024)].
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Chapter 4

Two-sided ergodic singular mean field
games for Itô-diffusions

Abstract

In this chapter, we study a probabilistic mean field game driven by a linear diffusion. To be more
precise, an individual player aims to minimize an ergodic long-run cost by controlling the diffusion
through a pair of –increasing and decreasing– càdlàg processes, while interacting with an aggregate
of players through the expectation of a similar diffusion controlled by another pair of càdlàg pro-
cesses. We consider the control problem formulated in Chapter 3 with an added pool of players whose
controls are reflecting controls and study the existence and uniqueness of equilibrium points in this
game. Furthermore, we examine the convergence of a finite-player game to this problem to justify our
approach.

We study the problem posed in 2.9 when the underlying process is under the same hypothesis
as the previous chapter (see equation (3.2)). Apart from the first section, all of this chapter is
based on [Christensen et al. (2023)].

This chapter is organized as follows. In Section 4.1 we give some historical remarks and
an introduction of stationary mean field games. In Section 4.2 we give the framework of the
chapter. In Section 4.3 we consider the mean field game problem. It adds the complexity
of a two-variable cost function where the second variable represents the market. The main
result consists of a set of conditions for the existence and uniqueness of equilibrium controls,
containing also a particular analysis when the cost function is multiplicative. Section 4.4
presents three examples that illustrate these results. Section 4.5 contains approximation results.
The equilibrium found for mean field games, becomes the limit of Nash equilibrium controls
when considering an individual player in the framework of a symmetric N -player game.
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4.1 Introduction

In recent years, mean field game theory has emerged as a powerful framework for modeling the
behavior of large populations of interacting players in a stochastic environment. This interdis-
ciplinary field lies at the intersection of mathematics, economics, and engineering, offering deep
insights into complex systems characterized by strategic interactions. Mean field game models
have found applications in various domains, including for instance, finance, energy systems
[Carmona(2021)], or traffic management and social dynamics [Festa and Göttlich (2018)]. The
two seminal papers in the field can be considered the contributions by [Huang et al. (2006)] and
[Lasry and Lions (2007)]. The key issue in their proposals, under the assumption of a large num-
ber of identically interacting players, is that individual actions do not affect a mean state of the
system. This means that an individual player faces an optimization problem against a synthetic
player, resulting from the aggregation of a large number of players, which is referred to in this
chapter as the market. The success of the proposal made it possible to solve various problems,
many of which can be found in the two-volume monograph by [Carmona and Delarue (2018)],
which has become a central reference in the field.

Our aim in this chapter is to incorporate a mean field game dependence into the two-sided
ergodic singular control problem for Itô-diffusions described in Chapter 3. As a consequence,
we obtain necessary and sufficient conditions for the existence of mean field game equilibrium
points, and, for more restricted families of cost functions, uniqueness within the class of reflect-
ing controls. Finally, we define an N -player problem and prove that a mean field equilibrium
is an approximate Nash equilibrium for the N -player game.

The mean field game framework is less discussed in the literature. However, there has been
increased activity in this area in the recent past. Here we would like to mention papers that
study similar problems that the one posed in this chapter.

• [Carmona, et. al. (2013)] Although this paper has structural differences with our problem,
we mention it because it has greatly contributed to the development of mean field games.
The underlying diffusion represents the log-monetary reserves of banks lending to and
borrowing from other. The controls αi

t are through the drift which represent the rate of
exchange of the banks. The SDE is of the form

dX i
t =

a

n

N∑
j=1

(Xj
t −Xt)dt+ αi

tdt+ σW i
t + σ

√
1− ρ2W 0

t , i = 1, . . . , N,

where W i, i = 0, . . . , N are independent Brownian motions, called idiosyncratic noise,
which represent the randomness that affects individual components of the system inde-
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pendently of one another and W 0 represents a common noise that affects all the system
simultaneously. All the parameters are positive and the objective of each agent is to
minimize a finite time horizon integral cost and a terminal cost, both penalizing the
deviation from the empirical mean and the running cost also penalizing the value α2

t . Dif-
ferent types of Nash equilibrium (see 1.2.3) are obtained using the Pontryagin principle, a
FBSDE approach and a HJB approach (see [Carmona and Delarue (2018), Chapter II]).
The mean field game equilibrium is also obtained explicitly using a HJB approach and
the convergence from finite many agents to the mean field game is proved. The authors
remark that although the Nash Equilibrium is explicitly obtained, the usefulness of the
study of the mean field game lies in the fact that it is a problem less affected by small
perturbations.

• [Lacker (2015)] The author, under general assumptions, proves the existence of a relaxed
mean field equilibrium when the underlying process is an Itô-diffusion and the controls
are exercised over the drift and the volatility. We proceed to give an informal explanation
of this notion of equilibrium (in fact the notation of the article is simplified here). Under
the usual framework for finite-horizon mean field game problems for d- dimensional Itó
diffusions, there is a flow of probability measures µ = {µt}t≥0 in Rd that represents the
aggregate of players, a control α = {αt}t≥0 and a controlled vector process Xα satisfying
the SDE:

dX i,α
t = bi(t,Xt, µ, αt)dt+ σi(t,Xt, µt, αt)dWt.

There are a couple of functions f, g representing a running cost/reward and terminal
cost/reward respectively. The objective is to find a control α∗ such that

α∗ ∈ argmax
α

{J(α,P(Xα∗

t ∈ dy))},

with

J(α, µ) = E

(∫ T

0

f(t,Xα
t , µt, αt)dt+ g(Xα

T , µT )

)
.

In the relaxed mean field game the controls, called relaxed controls, are random measures
q on [0, T ]× A (A the control space) such that for 0 ≤ s ≤ t ≤ T , q([s, t], A)(ω) = t− s

and some more technical integrability conditions. The controlled process Xq is defined in
a weak sense with its infinitesimal generator such that the measure P(Xq

t ∈ dy) is well
defined. The relaxed mean field equilibrium is a relaxed control q∗ that satisfies

q∗ ∈ argmax
q

{J(q, µ)},

56



with

J(q, µ) = E

(∫ T

0

f(t,Xq
t , µt, αt)dt+ g(Xq

T , µT )

)
.

The main results are a theorem that guarantees the existence of relaxed mean field equi-
librium (using a fixed point theorem) and under stricter hypotheses, the existence of a
mean field equilibrium (in the usual sense).

• [Fu and Ulrich (2017)] In the problem posed in this article, the author works with regular
controls (in the drift and volatility) and singular controls. To be more precise, the MFG
consists in finding a couple of controls process α∗, Z∗ (the first is the regular and the
second is the singular) such that

{µt}t≥0 = {P(Xα∗,Z∗

t ∈ dy)}t≥0,

(α∗, Z∗) ∈ argmin
α,Z

E

(∫ T

0

f(t,Xα,Z
t , µt, αt)dt+ g(Xα,Z

T , µT ) +

∫ T

0

h(t)dZt

)
,

dXα,Z
t = b(t,Xα,Z

t , µt, αt)dt+ σ(t,Xα,Z
t , µt, αt)dWt + c(t)dZt.

Existence of a relaxed MFG equilibrium is proved under general hypotheses (by using a
fixed point theorem). Moreover, by taking adequate controls and stricter hypotheses the
author showed that a problem with regular controls can approximate one with singular
ones. We remark that Zt is assumed to be non-decreasing.

• [Lacker and Zariphopoulou (2019)] The authors study two problems applied to finance
(see CARA and CRRA utilities in [Back (2017), Chapter I]). They are finite horizon
problems that only take into account the terminal cost at time T . In each one the N -
player game and the MFG are studied, conditions are given for existence and uniqueness
of constant equilibriums (they are given explicitly and convergence is proved) using a
HJB equation. Without going into technical details, both processes are controlled Itô-
diffusions. In the first case, the process X i represent the wealth of player i and the
controls represent the amount invested in the stock. The objective function penalizes
deviating from a factor of the empirical mean of the wealth of all players (this parameter
is called competition weight). In the second problem, the controls are treated as fractions
of wealth that the player i invests in the stock at time t. The objective functions take
into account the relative wealth with respect to the empirical mean at time T .

• [Guo and Renyuan (2019)] The authors study a two-sided singular discounted mean field
game and N -player problems. The integral running cost function is of the form h(xi−m)

with m representing the empirical mean and xi the state of player i (deviating from the
mean is penalized). The function h is convex, with 0 < k < h′′ < K. The underlying
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process is a Brownian motion. The problem is also known as fuel follower problem. The
authors give an explicit Nash equilibrium control (that depends on the state of the players
and is not unique) and a MFG equilibrium reflecting control. They also prove that the
MFG equilibrium reflecting control is an ϵN -Nash equilibrium for the N -player problem
with ϵN = O( 1√

N
).

• [Christensen et al. (2021)] The authors leave the classical setting of continuous stochastic
control and consider an ergodic stochastic impulse control problem. To be more specific,
they study a continuous time model with interventions at adaptively chosen discrete time
only. These controls arise whenever a cost K > 0 have to be paid for each intervention. In
this case the problem is related to resource management (harvesting to be more specific).
The admissible controls are R = {τn}n∈N, with each τn a stopping time such that τn <

τn+1. At each time τn, the controlled process, denoted XR, is taken back to zero. The
underlying process is an Itô-diffusion and the controlled process satisfies the equation:

XR
t = XR

0 +

∫ t

0

µ(XR
s )ds+

∫ t

0

σ(XR
s )dWs−

∑
τn≤t

(Xτ−n
− x).

In this optimization problem, the controlled process represents the forest stand and the
running cost function is the price of the wood. To define the mean field game, the flow of
players are represented with the controlled process XQ and the associated stopping times
σn are the same in law once shifted. The authors propose two kinds of dependence on the
flow of players. In the first one, the wood price depends on the average harvesting rate.
Thus, using regenerative theory, the reward function is of the form

Jx(R,Q) = lim inf
T→∞

Ex

(∑
τn≤T

(
γ

(
XR

τ−n
,
Ex(X

Q
σ−)− x

E(σ)

)
−K

))
.

In the second case, they assume that the prices do not depend on the average harvesting
rate, but on the expected wood supply thus the reward function is

Jx(R,Q) = lim inf
T→∞

Ex

(∑
τn≤T

(
γ
(
XR

τ−n
,Ex(X

Q
∞)− x

)
−K

))
.

in both cases, they provide criteria to guarantee the existence of MFG equilibrium con-
trols. But general conditions for uniqueness are only obtained in the first case. Moreover
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they also study the problem where the agents cooperate, that is to find Q satisfying

J(Q,Q) = sup
R

J(R,R).

We want to remark that this problem has an adjoint optimal stopping problem and the
verification theorems are not presented in the form of a HJB equation but as a more
probabilistic formulation relying on martingale’s theory.

• [Cao and Guo(2022)] This paper analyzes a class of MFGs, when the underlying process
is a geometric brownian motion with singular controls. The running cost function is of the
form f(x, µ) = xαρ(µ). The problem is similar to 2.7.2. The authors provide an explicit
solution to the MFG, they present a sensitivity analysis to compare the solution to the
MFG with that of the single-agent control problem, and establish its approximation to the
corresponding N -player game in the sense of ϵN , with ϵN = O

(√
1
N

)
. A HJB equation

is used to obtain the solution of the control problem and a fixed point theorem to get a
MFG equilibrium control (under given hypotheses).

• [Aïd et al.(2023)] The problem posed in this paper represents a continuous firm of unitary
mass indexed by their production capacity. Firms behave competitively and the company
can force productive shocks. the economy can vary between two states. The state that is
the economy at time t is represented by the process ϵt ∈ {1, 2}. There are two parameters
p1, p2 ∈ (0, 1). If the economy is in state i, it stays in that state an exponential time
with parameter pi (there is independence between the waiting times and the associated
Brownian motion W = {Wt}t≥0). The company is allowed to give a productivity shock
at any time represented by the increasing control I = {It}t≥0. The controlled process
representing the productivity of the company is then

XI
t = x exp

(
−
(
δt+

1

2

∫ t

0

σ2
ϵsds

)
+

∫ t

0

σϵsdWs + It

)
, δ, σi > 0.

When

– the process starts at the point x,

– the economy departs in the state i and

– the control representing the flow of the players is Qt,

the profit of the company is J(x,i)(I,Q). The problem is discounted with infinite-time
horizon. Without delving into much detail, its running function depends on ηϵt(Q)XI

t ,
each function ηi depending on the stationary distribution on Q, plus −c(X l

t)
2, c > 0 and

its singular part penalizes the controls. We remark, that the discount factor should be
bigger than 2max{σ2

1, σ
2
2}, thus it is not clear that the abelian limit holds. To solve the
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problem, two HJB equations arise, each one with an associated optimal stopping problem
(depending on the state of the economy). For a fixed Q = (Q1, Q2) ∈ R2

+, the optimal
controls are given by two barriers aQ1 , aQ2 such that in the state i the controls is the
reflection in (ai,∞) (this control pushes the process to ai if the process is below ai when
the state of the economy is i). Existence and uniqueness of MFG equilibrium are proved
using a fixed point theorem.

• [Cao et al.(2023)] The authors study an ergodic and discounted singular MFG. The un-
derlying process is an Itô-diffusion and the control is non-decreasing (obviously necessary
hypotheses are given so that the problem does not degenerates). The control problems
are similar to 2.7.2 and 2.7.1 but in this case, both are one sided, so in both control
problems a reflection in a half-line is the optimal control. To solve the discounted control
problem, a HJB equation is solved and the discounted MFG is characterized with the
unique root of an equation. The ergodic control problem follows a different path. The
authors, informally speaking, differentiate the infinitesimal generator in the adjoint HJB
equation, thus obtaining a new free boundary problem that is associated to an optimal
stopping problem with a different underlying process (this is due to the fact that µ and
σ are functions affected by differentiation). That way, they solve the new HJB equation
and by taking an adequate primitive they solve the original HJB equation. Again the
MFG equilibrium is obtained as the unique root of an equation.
The abelian limit is obtaining by proving that the map that associated the discount to the
extreme of the half-line that defines the optimal control is a continuous function. Finally,
the authors study the relationship of the MFGs with the N -player problem.

4.2 Setting

The probability space, the underlying diffusion and the admissible controls are the same as
the ones defined in 3.2. Due to the presence of a flow of players we need to change the cost
function.

We introduce below the cost function c(x, y) to be considered in the mean field game for-
mulation, satisfying some natural conditions.

Assumption 4.2.1. Assume that c : R2 → R+ is a continuous function, and the positive
constants qu, qd are the unit cost of using the associated controls. Assume that, for each fixed
y ∈ R there exist a value xy such that

c(x, y) ≥ c(xy, y) ≥ 0, for all x ∈ R,
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and constants Ky ≥ 0 and αy > 0 such that

c(x, y) +Ky ≥ αy|x|, for all x ∈ R. (4.1)

Consider the maps

π1(x, y) = c(x, y) + qdµ(x), π2(x, y) = c(x, y)− quµ(x),

and assume that for each fixed y ∈ R:

(i) There exists a unique real number xy
i = argmin{πi(x, y) : x ∈ R} so that πi(·, y) is de-

creasing on (−∞, xy
i ) and increasing on (xy

i ,∞), where i = 1, 2.

(ii) The following limits hold:

lim
x→∞

π1(x, y) = lim
x→−∞

π2(x, y) = ∞. (4.2)

4.3 Characterization of the MFG equilibrium

The study of the existence and uniqueness of equilibrium points begins with the application
of Theorem 3.4.2 when the state of the market is asymptotically constant. The cost function
becomes one-dimensional and the results in [Alvarez(2018)] can be applied.

More precisely, assuming f(x) continuous, the expectation of the market diffusion
Ex(f(X

c,d
t )) has an ergodic limit, denoted R(c, d), and applying the previous results, we can

prove that the optimal controls for the player should be found in the class of reflecting controls,
considering a one variable cost function of the form c(·, R(c, d)). This is why we assume that
the market is also controlled by reflections at some levels c < d, and expect to obtain an equi-
librium point when the optimal levels a < b that control the player’s diffusion coincide with
c < d (see Definition 4.3.1). Note that the question of the existence of equilibrium controls
beyond the class of reflecting controls is not addressed here. The requirements to apply these
results in the mean field game formulation follow.

4.3.1 Conditions for optimality and equilibrium

In this setting, we can generalize the results of the section before using some simple ergodic
results for diffusions. Recall that the function f(x) is assumed to be continuous.
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Definition 4.3.1. We say that a control η∗ is an equilibrium of the mean field game if it
belongs to the set

argmin
η=(U,D)∈A

{
lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
Xη

s ,Ex(f(X
η∗

s ))
)
ds+ quUT + qdDT

)}
.

In case the control is reflecting, i.e. η∗ = (Ua∗,b∗ , Da∗,b∗) we say that (a∗, b∗) is an equilibrium
point.

The idea of the above definition is to consider situations in which the individual player
has no incentive to act differently to the market. Regarding the three-step proposal of
[Carmona and Delarue(2013), Section 2.2], we would (i) choose a control µ ∈ A for the market,
(ii) solve the standard stochastic problem

inf
η=(U,D)∈A

{
lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
Xη

s ,Ex(f(X
µ
s ))
)
ds+ quUT + qdDT

)}
.

to obtain a control η (depending on µ), and (iii) find a fixed point in A of the map µ → η.
Compared to [Cao et al.(2023), Definition 3.2], closer to our formulation, Definition 4.3.1 admits
a time dependent value representing the market state. More precisely, in [Cao et al.(2023)], the
authors consider situations in which the controlled market process has a stationary distribution,
whose mean has to coincide with the equilibrium value. If this is the case, the control to be an
equilibrium, in general terms, should be a reflecting one. Nevertheless, as the following results
shows, when considering reflecting controls, we can substitute the time dependent value by its
limit in Definition 4.3.1.

Theorem 4.3.1. Consider the points a < b, c < d, and x ∈ R. Then

lim sup
T→∞

1

T
Ex

(∫ T

0

c(Xa,b
s ,Ex

(
f(Xc,d

s ))
)
ds+ qddD

a,b
s + qudU

a,b
s

)
=

1

m(a, b)

(∫ b

a

c(u,R(c, d))m(du) +
qu

S ′(a)
+

qd
S ′(b)

)
, (4.3)

where

R(c, d) =

∫ d

c

f(u)

m(c, d)
m(du).

Proof. Applying Lemma 3.3.1 with the cost function c(·, R(c, d)) we obtain that
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lim
T→∞

1

T
Ex

(∫ T

0

c(Xa,b
s , R(c, d))ds+ quU

a,b
T + qdD

a,b
T

)
=

1

m(a, b)

(∫ b

a

c(u,R(c, d))m(du) +
qu

S ′(a)
+

qd
S ′(b)

)
,

i.e. the r.h.s. in (4.3). It remains then to verify that

lim sup
T→∞

1

T
Ex

(∫ T

0

|c(Xa,b
s ,Ex(f(X

c,d
s )))− c(Xa,b

s , R(c, d))|ds
)

= 0. (4.4)

In order to do this, define the continuous function H : f([c, d]) → R+ by

H(y) = max
u∈[a,b]

|c(u, y)− c(u,R(c, d))|,

and observe that the limit in (4.4) can be bounded by

lim sup
T→∞

1

T

∫ T

0

H(Ex

(
f(Xc,d

s )))ds = lim sup
T→∞

1

T

∫ T

0

H

(∫ d

c

f(y)Ps(x, dy)

)
ds,

with Ps(x, dy) = Px(Y
c,d
s ∈ dy). This limit is zero because

H

(∫ d

c

f(y)Ps(x, dy)

)
→ H(R(c, d)) = 0,

as H is uniformly continuous, bounded and∥∥∥∥Ps(x, ·)−
1

m(c, d)
m(·)

∥∥∥∥→ 0, as s → ∞,

with the norm of total variation (see [Rogers and Williams (2000), Theorem 54.5]). It follows
that (4.4) holds, concluding the proof.

The existence and uniqueness of minimizers given in (b) in Corollary 3.3.2 can also be
generalized, by noticing that in Theorem 4.3.1 the second variable in the cost function is
fixed. The optimality of reflecting controls within the class of càdlàg controls corresponding to
Definition 4.3.1 follows from Theorem 3.4.2.

Theorem 4.3.2. For a fixed (a, b), the infimum of the ergodic problem is reached only at a pair
(a∗, b∗) such that

(i) π1(b
∗, R(a, b)) = π2(a

∗, R(a, b)),
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(ii)
∫ b∗

a∗
(π1(t, R(a, b))− π1(b

∗, R(a, b)))m(dt) +
qu + qd
S ′(a∗)

= 0.

Moreover (a∗, b∗) ∈ (−∞, x
R(a,b)
2 )× (x

R(a,b)
1 ,∞)

Based on this result we obtain a condition for equilibrium of the mean field game (see
Definition 4.3.1).

Theorem 4.3.3. A pair a < b is an equilibrium point if and only if

(i) π1(b, R(a, b)) = π2(a,R(a, b)),

(ii)
∫ b

a

(π1(t, R(a, b))− π1(b, R(a, b)))m(dt) +
qu + qd
S ′(a)

= 0.

Moreover (a, b) ∈ (−∞, x
R(a,b)
2 )× (x

R(a,b)
1 ,∞).

4.3.2 The multiplicative case

In this subsection, we assume that the cost function has a multiplicative form.

Assumption 4.3.4. The cost function satisfying Assumption 4.2.1, is factorized as

c(x, y) = g(x)h(y),

where the factors satisfy

(i) g : R → [0,∞) is a convex function, with g(x) ≥ g(0),

(ii) h : R → (0,∞) is continuous, with h(x) ≥ h(0).

Note that such a multiplicative decomposition can be applied when g(x) is interpreted as
a standardized representation of the units of a good corresponding to a state x and h(y) as
the factor that models the market-based unit cost of maintenance, as an example in forestry of
g(x) modeling the forest stand, see [Sohr, T. (2020), 5.2.1].

We give a first result that follows from Theorem 4.3.3 if the cost function is multiplicative.
In this situation, using condition (i), one of the variables can be obtained as a function of the
other. For this purpose, consider the set

Ca = {b ∈ R : b > x
R(a,b)
1 ∨ a, x

R(a,b)
2 > a, π1(b, R(a, b)) = π2(a,R(a, b))}.

Observe that if Ca = ∅, there are no equilibrium points. We then assume condition Ca ̸= ∅ if
and only if a ≤ 0. This means that we search for the equilibrium points in a connected set.
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Furthermore, for a fixed a ≤ 0 we denote

ρ(a) = inf Ca, (4.5)

and
L(a) = R(a, ρ(a)).

Proposition 4.3.5. Suppose that the cost function factorizes as in Assumption 4.3.4, and there
exists a point a0 ≤ 0 such that the function ρ defined via (4.5) is continuous in (−∞, a0]. Then,

(C1) if ∫ ρ(a0)

a0

(π1(t, L(a0))− π1(ρ(a0), L(a0)))m(dt) +
qu + qd
S ′(a0)

≥ 0,

then there is at least one equilibrium point.

(C2) Furthermore, if in (−∞, a0],

π2(t, L(a2))− π2(a2, L(a2)) < π2(t, L(a1))− π2(a1, L(a1))

∀(a2, a1, t) s.t, a2 < a1 < t ≤ a0,

π1(t, L(a2))− π1(ρ(a2), L(a2)) < π1(t, L(a1))− π1(ρ(a1), L(a1))

∀(a2, a1, t) s.t. ρ(a2) > ρ(a1) > t ≥ a0,

and ∫ l

r

(π1(t, R(r, l))− π1(l, R(r, l)))m(dt) +
qu + qd
S ′(r)

> 0,

∀r ∈ (a0, ρ(a0)), l > r, π1(l, R(r, l)) = π2(r, R(r, l)), (4.6)

then the equilibrium is unique.

Proof. For the existence of equilibrium points, we need to prove∫ ρ(A)

A

(π1(t, L(A))− π1(ρ(A), L(A)))m(dt) +
qu + qd
S ′(A)

< 0,

for some A < a0. First, observe that the inequality can be rewritten as
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∫ 0

A

(π2(t, L(A))− π2(A,L(A)))m(dt)

+

∫ ρ(A)

0

(π1(t, L(A))− π1(ρ(A), L(A)))m(dt) +
qu + qd
S ′(0)

< 0. (4.7)

Furthermore, due to the nature of the multiplicative cost, the points xy
i , i = 1, 2 defined in

(4.2.1) can be taken all equal to x0
i for each i respectively. Thus, for A negative enough, both

integrands are always negative and tend to −∞ when A → −∞. Finally, for the uniqueness,
condition (C2) implies that the map defined in (−∞, a0]:

a →
∫ ρ(a)

a

(π1(t, L(a))− π1(ρ(a), L(a)))m(dt) +
qu + qd
S ′(a)

,

is monotone, thus concluding that the root of this map is unique.

Remark 4.3.1. Condition (C2) is a condition on differences of value functions. In particular,
if we assume π2 ∈ C2((−∞, a0)× R), f defined in the introduction of the section is increasing
and L(a) is increasing, then the first inequality in condition (C2) holds if π2 has negative cross
second derivative in (−∞, a0)× R which is equivalent to the function

(a, µ) → π2(a, ⟨f, µ⟩), a ∈ (−∞, a0), µ a probability measure,

being submodular (see [Dianetti et. al. (2019), Assumption 2.9 and Example 2]). A similar
analysis can be made with the second inequality (the function in this case is supermodular).

In the particular case of a diffusion without drift, the conditions of the previous proposition
are satisfied under the following simple conditions.

Corollary 4.3.6. Suppose that the cost function factorizes as in Assumption 4.3.4. Assume
furthermore that g is unbounded, convex and with minimum at zero, and the diffusion process
(3.2) has no drift (which in our framework is equivalent to S(x) = x, we say that such a process
is in natural scale). Then,

(a) the function ρ(a) is defined as the unique solution of the equation h(a) = h(b), with a ≤
0 ≤ b, and there exists an equilibrium point,

(b) if the function h(R(a, ρ(a))) is strictly decreasing for a ≤ 0, the equilibrium is unique.

Proof. Take a0 = 0. We have that π1(b, R(a, b)) = π2(a,R(a, b)) is equivalent to the equality
g(b) = g(a), thus from the fact that g is convex with a minimum at zero, the restriction of g to
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x < 0 is an invertible function, denote it by g|(−∞,0)
, and we can define

ρ(a) =
(
g|(−∞,0)

)−1

(a).

We conclude part (a) from the fact ρ(0) = 0 and condition (C1) and is fulfilled. Condition
(C2) is verified, the first two statements follow from the monotonicity of h and a → g(a,R(a))

because the inequalites can be rewritten as:

(g(t)− g(a2))h(R(a2, ρ(a2))) < (g(t)− g(a1))h(R(a1, ρ(a1)))

∀(a2, a1, t) s.t, a2 < a1 < t ≤ 0,

(g(t)− g(ρ(a2)))h(R((a2), ρ(a2))) < (g(t)− g(a1))h(R(a1, ρ(a1)))

∀(a2, a1, t) s.t. ρ(a2) > ρ(a1) > t ≥ 0.

The third integral (4.6) condition in (C2) is automatic, as (a0, ρ(a0)) = (0, 0).

4.4 Examples

We present below several examples where the equations of Theorem 4.3.3 can be expressed
more explicitly and solved numerically. To help the presentation, for each example, we plot in
an (a, b) plane the implicit curves defined by these equations. To this end, we write equation
(i) in Theorem 4.3.3 as

F (a, b) = π1(a,R(a, b))− π2(b, R(a, b)) = 0,

and draw first the set of its solutions. We then draw the set determined by condition (ii). Note
that there are cases where there is an intersection of both curves outside the set {a < b}, these
points are of no interest for our problem. In all examples the function affecting the expectation
of the market is f(x) = x.

4.4.1 Examples with multiplicative cost

The cost function now has the form

c(x, y) = max(−λx, x)(1 + |y|β), λ > 0, β ≥ 1, (4.8)

67



and qdλ = qu.

Remark 4.4.1. In this scenario the value max(−λx, x) could represent the maintenance cost
of certain property done by a third party. This third party will change the price of its services
depending on the demand of the market.

We consider a mean reverting process X = {Xt} that follows the stochastic differential
equation

dXt = −θXtdt+ σ(Xt)dWt, (4.9)

such that σ is a function that satisfies the conditions of Section 4.2 and qdθ < 1. Under these
conditions the function c(x, y) is under Assumptions 4.2.1. First observe that if we take xy = 0

for all y ∈ R, then c(x, y) ≥ c(xy, y) = 0, Second, by taking Ky = 0, αy = λ ∧ 1 for all y ∈ R,
condition (4.1) is satisfied. Finally observe that for every y ∈ R the maps π1(x, y), π2(x, y)

are decreasing on x in (−∞, 0), increasing on x in (0,∞) and both conditions (i) and (ii) in
Assumptions 4.2.1 are satisfied.

In the particular case when σ is constant, we can compute

R(a, b) =

√
σ2

θπ

 e−a2 θ
σ2 − e−b2 θ

σ2

erf
(√

θ
σ2 b
)
− erf

(√
θ
σ2a
)
 ,

where erf(x) = 1√
2π

∫ x

−∞ e−y2/2 dy. Using Proposition 4.3.5, existence of equilibrium points
holds. Furthermore, if σ is even then uniqueness also holds. In the graphical examples below
σ is constant.

Figure 4.1: Mean reverting process (4.9) with multiplicative cost and parameters θ = 0.4, qd =
0.1, λ = 1, σ = 2, β = 1. The equilibrium point (EP) is (−0.646, 0.646) with value 0.617.
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We proceed with the calculations. Proposition 4.3.5 is used with a0 = 0. We assume
λ ≥ 1 (in other cases symmetrical arguments can be used), c(x, y) = max(−λx, x)(1 + |y|β),
q := qd = quλ

−1, β > 0 and qdθ < 1 ∧ λ−1 so the function c is a cost function.
The equality π1(b, R(a, b)) = π2(a,R(a, b)) reads as −λa = b taking into account that

a < 0 < b . Furthermore if σ is an even function we deduce R(a,−λa) is decreasing in a so:

π2(t, L(a))− π2(a, L(a)) = (a− t)(1 +R(a,−λa)β − qdλθ)

which decreases to −∞ in a.

π1(t, L(a))− π1(−λa, L(a)) = (t− λa)(1 +R(a,−λa)β − quθ)

which decrease to −∞ implying that uniqueness and existence holds.

4.4.2 “Follow the market" examples

The idea is to introduce a cost function in such a way that the player has incentives to follow
the market evolution. The cost function is then

c(x, y) = |x− y|.

Brownian motion with negative drift

In this case, the driving process X = {Xt} is

Xt = µt+Wt,

where µ < 0. We proceed to prove that Assumption 4.2.1 is satisfied. By taking xy = y for all
y ∈ R, then c(x, y) ≥ c(xy, y) = 0, Second, by taking Ky = |y|, αy = 1 for all y ∈ R then (4.1)
is satisfied. Finally observe that for every y ∈ R the maps π1(x, y), π2(x, y) are decreasing on
x in (−∞, y), increasing on x in (y,∞) and both conditions (i) and (ii) in Assumptions 4.2.1
are satisfied.
The problem can be reduced to a one variable problem. The conclusions are:

• If there is a positive constant C such that

C(1 + e2µC)(1− e2µC)−1 + (qu + qd)µ+ µ−1 = 0,( C

e2µC − 1

)2e2µC
µ

+
−2e2µC + 2Cµ+ 1

2µ2 + qd + qu = 0,
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then every point of the set {(a, a+ C), a ∈ R} is an equilibrium point.

• Otherwise there are no equilibrium points.

We put the graphics before the calculations.

Figure 4.2: Brownian motion with drift and cost function c(x, y) = |x − y|. On the left (qu + qd =
0.1, µ = −0.89) the value at equilibrium points is constant 0.848. On the right (qu + qd = 2, µ = −1 )
there are no equilibrium points

In this case,
S ′(x) = exp(−2µx), m′(x) = 2e2µx.

Therefore

R(a, b) =

∫ b

a

2ue2µudu∫ b

a

2e2µudu

=
be2µb − ae2µa

e2µb − e2µa
− 1

2µ
.

The cost function is c(x, y) = |x− y|. We proceed to analyze the function ρ. The notations are
the same as Proposition 4.3.5. The equation π2(a,R(a, b)) = π1(b, R(a, b)) is equivalent to

F (a, b) = (b+ a) +
1

µ
− 2

(
be2µb − ae2µa

e2µb − e2µa

)
+ µ(qu + qd) = 0.

On one hand, when a < 0 the equation F (a, b) = 0 has a solution b > 0 because

a+ µ−1 + µ(qu + qd) < 0

On the other, when a ≥ 0, the equation F (a, b) = 0 also has a root because b−2R(a, b) → −∞
when b → ∞.
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We compute the partial derivative

∂F

∂b
(a, b) = −1

(e2µ(b−a))
(
2µ(a− b)− 1 + e2µ(b−a)

)
(1− e2µ(b−a))2

> 0.

We deduce that the function ρ is well defined in all R and the roots of F (a, b) are unique for
each a. Furthermore, if C is the positive constant that satisfies the equality

C(1 + e2µC)(1− e2µC)−1 = −(qu + qd)µ− µ−1,

then F (a, a+ C) = 0. So ρ(a) = a+ C.
From Theorem 4.3.2 we know the -equilibrium points (a, b) must satisfy the equality:∫ b

a

(|t−R(a, b)| − b+R(a, b))2e2µtdt+ (qu + qd)e
2µa = 0. (4.10)

More explicitly, ∫ b

a

(∣∣∣t+ 1

2µ
− be2µb − ae2µa

e2µb − e2µa

∣∣∣− b− 1

2µ
+
be2µb − ae2µa

e2µb − e2µa

)
2e2µtdt

+ (qu + qd)e
2µa = 0 (4.11)

With the change of variable u = t− b the equality (4.11) is equivalent to:∫ 0

a−b

(∣∣∣u− (b− a)

e2µ(b−a) − 1
+

1

2µ

∣∣∣+ (b− a)

e2µ(b−a) − 1
− 1

2µ

)
2e2µ(u+b−a)du e2µa

+ (qu + qd)e
2µa = 0. (4.12)

Therefore if there is a point (A,B) that satisfies (4.11) then every point (a, b) such that b−a =

B − A also satisfies (4.11). To solve the integral define C := b − a and K := C(exp(2µC) −
1)−1 − (2µ)−1 so the integral in (4.12) becomes∫ 0

−C

(∣∣∣u−K
∣∣∣+K

)
2e2µ(C+u)du = 2e2µK

∫ −K

−C−K

|r|e2µ(C+r)dr +Ke2µC
1− e−2µC

µ

=
2

4µ2
e2µ(K+C)

(
e2µr(2µr − 1)

∣∣0
−C−K

− e2µr(2µr − 1)
∣∣−K

0

)
+Ke2µC

1− e−2µC

µ

=
1

2µ2
e2µC(−e−2µC(2µ(−C −K)− 1)− (−2µK − 1)) +Ke2µC

1− e−2µC

µ

= e2µC

(
4µK + 1

2µ2

)
+

2Cµ+ 1

2µ2
=
( C

e2µC − 1

)2e2µC
µ

+
−2e2µC + 2Cµ+ 1

2µ2 .
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Solving the integral in (4.11) we conclude that a point (a, b) is an equilibrium point iff C := b−a

satisfies

C(1 + e2µC)(1− e2µC)−1 + (qu + qd)µ+ µ−1 = 0( C

e2µC − 1

)2e2µC
µ

+
−2e2µC + 2Cµ+ 1

2µ2 + qd + qu = 0

Using 4.3.1 it can be shown that the value of the game is the same for all equilibrium points,
and it is

−C exp(−2µC)(1− exp(−2µC))−1 − (2µ)−1 + qdµ

Ornstein Uhlenbeck process

In this case, the process X = {Xt} follows the stochastic differential equation

dXt = −θXtdt+ σdWt,

We analyze the symmetric case when q := qd = qu and qθ < 1. In this situation, taking the
same parameters as in the previous example, c(x, y) is under Assumption 4.2.1. The exis-
tence of equilibrium points will hold, but uniqueness not necessarily. Essentially, the equation
π1(a,R(a, b)) = π2(a,R(a, b)) is satisfied when a = −b by symmetry, so similar arguments as
the ones in the multiplicative case hold. However the line a + b = 0 is not the only set where
π1(a,R(a, b)) = π2(a,R(a, b)). We show that uniqueness does not always hold, see Figure 4.3.
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Figure 4.3: Mean reverting process with q = 0.1, θ = 3, σ = 2, EP1 ∼ (−4.26,−1.86), EP2 ∼
(−0.78, 0.78), EP3 ∼ (1.87, 4.27) with the values 0.839, 0.55 and 0.84 at each equilibrium point
respectively

4.5 Approximation of Nash equilibria in symmetric N-

player games with mean field interaction

In this section, we present an approximation result for Nash equilibria in the N -player game
corresponding to the ergodic mean field game considered above, when the number of players N
tends to infinity. More precisely, we establish that an equilibrium point of the mean field game
defined in (4.3.1) is an ϵ-Nash equilibrium of the corresponding N -player game (see Definition
4.5.1). These approximation results have been studied for instance in [Cao and Guo(2022)] and
[Cao et al.(2023)] and the references therein. In order to formulate the approximation result,
consider:

(i) A filtered probability space (Ω,F ,F = {Ft}t≥0,P) that satisfies the usual conditions,
where all the processes are defined.

(ii) Adapted independent Brownian motions W, {W i}i=1,2,..., with the corresponding processes
X, {X i}i=1,2,..., each of one satisfies equation (3.2) driven by the respective W, {W i}i=1,2,...,.

(iii) The set of admissible controls A of Definition 3.2.1, that in particular assumes, given an
admissible control ηi = (U i, Di), the existence of the controlled process as a solution of

dX i,ηi

t = µ(X i,ηi

t )dt+ σ(X i,ηi

t )dW i
t + dU i

t − dDi
t, X i

0 = xi, (4.13)

for each i = 1, 2, . . .

For simplicity and coherence we denote by X i,a,b the solution to (4.13) when the i-th player
chooses reflecting controls within a < b, denoted respectively by U i,a,b and Di,a,b. As usual, we
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define a vector of admissible controls by

Λ = (η1, . . . , ηN)

such that ηi = (U i, Di) is an admissible control selected by the player i in the N -player game.
Furthermore, we define

Λ−i = (η1, . . . , ηi−1, ηi+1, . . . , ηN),

(µ,Λ−i) = (η1, . . . , ηi−1, µ, ηi+1, . . . , ηN)

and, given a real continuous function f(x), denote

f̄−i
s =

1

N − 1

N∑
j ̸=i

f(Xj,ηj

s ), f̄a,b,−i
s =

1

N − 1

N∑
j ̸=i

f(Xj,a,b
s ), (4.14)

and, given µ = (U,D) ∈ A, for (µ,Λ−i), consider

V i
N(µ,Λ

−i)(x) = lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
X i,µ

s , f̄−i
s

)
ds+ quU

i
T + qdD

i
T

)
, (4.15)

for a cost function c(x, y) satisfying Assumption 4.2.1.

Definition 4.5.1. For fixed ϵ > 0 and N ∈ N, a vector of admissible controls Λ = (η1, . . . , ηN)

is called an ϵ-Nash equilibrium if for all i and all x ∈ R,

V i
N(η

i,Λ−i)(x) ≤ V i
N(µ,Λ

−i)(x) + ϵ, for all µ ∈ A.

We are ready to prove that the equilibrium points of the mean field game are ϵ-Nash equi-
libriums for the N -player game in two different situations: (i) with reflecting controls for the
players and a cost function that is convex in the second variable, (ii) with general controls in
A for the cost function c(x, y) = |x− y|.

Theorem 4.5.1. Consider a cost function c(x, y) that satisfies Assumption 4.2.1, and suppose
that the function f(x) in Def. 4.3.1 is continuous. Assume also that one of the following
conditions holds:

(i) For every fixed x the function y 7→ c(x, y) is convex, and the set of admissible controls for
each process X i, i = 1, . . . , N , is the set of reflecting controls instead of A.

(ii) We have f(x) = x and the cost function is c(x, y) = |x− y|.
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Then, if (a, b) is an equilibrium point for the mean field game driven by X, given ϵ > 0, the
vector of controls

Λa,b = ((U1,a,b, D1,a,b), . . . , (UN,a,b, UN,a,b)), (4.16)

is an ϵ-Nash equilibrium for the N-player game, for N large enough.

In the proof of (i) we will use the following result.

Lemma 4.5.2. Let c(x, y) be a positive continuous function such that y 7→ c(x, y) is convex for
each fixed x, and (X, Y ) a random vector. Then

(a) If X and Y are independent,

Ec(X,EY ) ≤ Ec(X, Y ). (4.17)

(b) In the general case, statement (4.17) is not true.

Proof of Lemma 4.5.2. (a) With FX and FY the respective distributions of X and Y , we have

Ec(X, Y ) =

∫ (∫
c(x, y)FY (dy)

)
FX(dx)

≥
∫

c

(
x,

∫
yFY (dy)

)
FX(dx) = Ec(X,EY ).

To see (b), consider c(x, y) = |x− y|, a standard normal random variable X ∼ N (0, 1), and the
random vector (X, Y ) = (X,X). We have

Ec(X, Y ) = E|X −X| = 0 <

√
2

π
= Ec(X,EY ) = E|X|,

giving the counter-example that concludes the proof.

Proof of (i) in Theorem 4.5.1. Define the function

V : A× {(a, b) : a < b} → R (4.18)

by the formula

V (µ, (a, b)) = lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
Xµ

s ,Ex(f(X
a,b
s ))

)
ds+ quUT + qdDT

)
,

where µ = (U,D). Take Λa,b as in (4.16). The departing point is the inequality provided by
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the equilibrium definition:

V ((Ua,b, Da,b), (a, b)) ≤ V (µ, (a, b)), for any µ ∈ A. (4.19)

Second, by equidistribution of the player’s driving processes,

Exc(X
µ
s ,Ex(f(X

a,b
s ))) = Exc(X

µ
s ,Ex(f̄

a,b,−i
s )).

Now, taking c < d and µ = (U c,d, Dc,d), by convexity and independence between the coordinates,
we apply (i) in Lemma 4.5.2:

Exc(X
c,d
s ,Ex(f̄

a,b,−i
s )) ≤ Exc(X

c,d
s , f̄a,b,−i

s ),

Integrating in time, taking expectation and ergodic limits, combined with (4.19), it follows

V ((Ua,b, Da,b), (a, b)) ≤ V ((U c,d, Dc,d), (a, b)) ≤ V i
N((U

c,d, Dc,d),Λa,b,−i
N ). (4.20)

Now, as f(x) is continuous the set f([a, b]) is a closed interval, denote it by [m,M ], and observe
that

(X i,a,b
s , f̄a,b,−i

s ) ∈ [a, b]× [m,M ],

that is a product of closed intervals. Then, as c(x, y) is uniformly continuous in this compact
domain, given ϵ there exist δ s.t.

|c(Xµ
s , f̄

a,b,−i
s )− c(Xµ

s ,Ex(f(X
a,b
s ))| ≤ ϵ

2
,

whenever |f̄a,b,−i
s −Ex(f(X

a,b
s ))| ≤ δ. Now we apply Hoeffding’s inequality for bounded random

variables m ≤ f(Xj,a,b) ≤ M , obtaining,

P
(
|fa,b,−i − Ex(f(X

a,b
s ))| ≥ δ

)
≤ 2e

− 2δ2(N−1)

(M−m)2 .

Finally, denoting ∥c∥∞ = max{|c(x, y)| : a ≤ x ≤ b,m ≤ y ≤ M}, we have

∣∣∣∣ 1T Ex

∫ T

0

(
c(X i,a,b

s , f̄a,b,−i
s )− c(X i,a,b

s ,Ex(f(X
a,b
s ))

)
ds

∣∣∣∣
≤ ϵ

2
+

2∥c∥∞
T

∫ T

0

Px

(
|f̄a,b,−i

s − Ex(f(X
a,b
s ))| ≥ δ

)
ds

≤ ϵ

2
+ 4∥c∥∞e

− 2δ2(N−1)

(M−m)2 ≤ ϵ,
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for N large enough. From this follows that, for these values of N ,∣∣∣V ((Ua,b, Da,b), (a, b))− V i
N((U

a,b, Da,b),Λa,b,−i
N )

∣∣∣ ≤ ϵ,

concluding, in view of (4.20), the proof of (i).

Proof of (ii) in Theorem 4.5.1. As f(x) = x, we denote

X̄a,b,−i
s,N =

1

N − 1

N∑
j ̸=i

Xj,a,b
s .

As (a, b) is an equilibrium point of the mean field game, given ϵ > 0, we have to prove that

V i
N((U

i,a,b, Di,a,b),Λa,b,−i) ≤ V i
N(η,Λ

a,b,−i) + ϵ, (4.21)

for any control η ∈ A, for N large enough. Observe now that if for some N0 we have K0 =

V i
N0
(η,Λa,b,−i) < ∞, then

lim sup
T→∞

1

T
Ex

∫ T

0

∣∣∣Xη
s − X̄a,b,−i

s,N0

∣∣∣ ds =: I0 < ∞,

lim sup
T→∞

1

T
Ex(quUT ) =: J0 < ∞,

lim sup
T→∞

1

T
Ex(qdDT ) =: K0 < ∞.

By adding and substracting X̄a,b,−i
s,N0

and the triangular property, it follows

lim sup
T→∞

1

T
Ex

∫ T

0

|Xη
s | ds ≤ I0 +max(|a|, |b|),

and in consequence

max(V (η, (a, b)), V i
N(η,Λ

a,b,−i)) ≤ I0 + J0 +K0 + 2max(|a|, |b|),

for all N and i. Then, in order to prove (4.21), we consider these controls. Now, as (a, b) is an
equilibrium point, we have
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V i
N((U

i,a,b, Di,a,b),Λa,b,−i)− V i
N(η,Λ

a,b,−i)

= V i
N((U

i,a,b, Di,a,b),Λa,b,−i)− V (η, (a, b)) + V (η, (a, b))− V i
N(η,Λ

a,b,−i)

≤ V i
N((U

i,a,b, Di,a,b),Λa,b,−i)− V ((Ua,b, Da,bb), (a, b))

+ V (η, (a, b))− V i
N(η,Λ

a,b,−i)

≤ 2 sup
η∈A

∣∣V (η, (a, b))− V i
N(η,Λ

a,b,−i)
∣∣ .

By the triangular inequality, we observe that for η ∈ A,

∣∣V (η, (a, b))− V i
N(η,Λ

a,b,−i)
∣∣

≤ lim sup
T→∞

1

T
Ex

∫ T

0

∣∣|Xη
s − X̄a,b,−i

s | − |Xη
s − Ex(X

a,b
s )|

∣∣ ds
≤ lim sup

T→∞

1

T

∫ T

0

Ex|X̄a,b,−i
s − E(Xa,b

s )|ds ≤ b− a√
N − 1

,

because

Ex|X̄a,b,−i
s − Ex(X

a,b
s )| ≤

√
1

N − 1
varx(X

a,b
s ) ≤ b− a√

N − 1
,

concluding the proof.
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Chapter 5

Ergodic and discounted singular
control problems for Lévy processes

Abstract
In this chapter, we study a pair of two-sided, long time average singular control problems where

the underlying process is a Lévy process. Specifically, in the first problem the objective is to minimize
a discounted long-run cost by controlling the process through a pair of –increasing and decreasing–
càdlàg processes. The way to do this, is through an adjoint Dynkin game. In the second problem,
the framework is similar but the cost is ergodic. We solve this second case by using the abelian limit
of the solution obtained in the first one. With these results, we conclude that the optimal controls
within the class of càdlàg controls can be in fact found in the class of reflecting controls controls for
both problems, and solved through some deterministic equations.

We study the problem posed in 2.7.1 and 2.7.2 when the underlying process is a Lévy process,
the entirety of this chapter is based on [Mordecki and Oliú (2024)].

This chapter is organized as follows. In Section 5.3 verification results that give sufficient
conditions for controls to be optimal are provided for both the ergodic and the discounted
problems. It should be noted that our results allow us to work with approximations of the cost
functions. In Sections 5.4 and 5.5, we show that the solution of the discounted problem is the
solution of a Dynkin game in the sense that the continuation region of the Dynkin game is an in-
terval whose extremes define a two-sided reflecting optimal control (see [Andersen et al. (2015)]
and [Kruk et. al. (2008)]) for the discounted problem. This game is a particular case of the
one proposed in [Stettner (1982)]. Furthermore, in Section 5.5, we prove that the abelian limit
holds. This means that, when the discount rate ϵ decreases to zero, the normalized expected
reward associated to the ϵ-discounted problem converges to a constant for each starting point,
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the latter constant being actually the value of the ergodic problem. Moreover, we prove that
the optimal controls also give a convergent subsequence. Instead of using some criterion of
continuity in the solutions like in [Cao et al.(2021)], we make use of our verification theorems
in such a way that they relate both problems. Finally, Section 5.6 presents three examples,
the first two when the driving Lévy process are Compound Poisson process with two-sided
exponential jumps with and without Gaussian component, the third involving a strictly stable
process with finite mean.

The explicit results in these examples are possible because the two-barrier problem for these
processes can be solved explicitly (see [Kyprianou(2006)] and [Cai et al. (2009)]).

5.1 Introduction

The main idea of this chapter is to use an adjoint optimization problem to obtain an op-
timal reflecting control. In some cases, where the problem is one-sided, a link between op-
timal control and optimal stopping problems has been established (see [Karatzas (1983)], or
more recently, for Lévy processes, [Sexton (2022), Noba and Yamazaki (2022)] as examples).
In the case where the system is controlled by a process of bounded variation and the un-
derlying process is an Itô-diffusion, verification theorems in the form of HJB equations that
define a free boundary problem have been proposed and solved explicitly (see for example
[Ferrari and Vargiolu (2017), Christensen et al. (2023), Kunwai et al. (2022)]). In these prob-
lems, the optimal control problem reduces to the question of finding two barriers such that the
process is reflected when it reaches them. This approach does not seem to work in the case
of Lévy processes, when the free boundary problem has an integro-differential equation that
cannot be solved explicitly. In general when the underlying process is Lévy, it does not seem
clear how to prove directly that the HJB has a solution with the needed regularity. With this
problem in mind, we establish a link between the discounted problem and an auxiliary Dynkin
game in such a manner that the solution of the Dynkin game exists and defines two thresholds
that allows us to construct the optimal reflecting control for the long time optimization prob-
lem. Furthermore we prove that the abelian limit holds defining an ergodic problem similar to
the ones in [Jack and Zervos (2006)] and [Alvarez(2018)]. We mention more reference where
this relationship is relevant:

• [Karatzas and Wang (2003)] The two-sided control problem here is of finite horizon T .
The elements of the control set A are adapted left-continuous increasing processes

ηt = U+
t −D−

t , 0 ≤ t ≤ T.
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The controlled process is Xt = ηt + x (x represents the starting point). The bounded
variation control problem is of the form

u(x) = inf
η∈A

E(J(η, x))

= E

(∫ T

0

H(t,Xt)dt+

∫
[0,T )

γ(t)dU+(t) +

∫
[0,T )

ν(t)dD−(t) +G(XT )

)
. (5.1)

We enumerate some of the hypotheses:

– H : [0, T ]× Ω× R → R is (t, ω) progressively measurable for every x and for every
(t, ω), x → H(t, ω, x) is convex and continouously differentaible.

– γ, ν[0, T ]× Ω → [0,∞) are continuous and adapted.

– The terminal cost G : Ω×R → R is convex in the spatial variable and continuously
differentiable almost surely.

We wanted to remark these hypotheses because, with the difference the controls are left-
continuous and the running cost functions do not need to be C1, this problem is the finite
horizon version of 2.7.2 if we take the functions

H(t, ω, x) := c(x)e−ϵs, γ(t) ≡ e−ϵtqd, ν ≡ e−ϵtqu.

The adjoint Dynkin game is of the form (denoting R the set of stopping times):

v(x) = sup
τ∈R

inf
σ∈R

E

(∫ τ∧σ

0

Hx(t, x)dt+ γ(σ)1σ<τ − ν(τ)1τ<σ +G′(x)1τ=σ=T

)
= inf

σ∈R
sup
τ∈R

M(x, τ, σ) = inf
σ∈R

sup
τ∈R

M(x, τ, σ) = M(x, τ ∗, σ∗), (5.2)

where the equalities in the second line, and the existence of τ ∗, σ∗ are proved in the paper.
We make a resume of the most important results:

a) There is an optimal control η∗ for the problem defined (5.1). This control is obtained
approximating the infimum and showing that the controls converge to an optimal
control (here T < ∞ is used).

b) The stopping times (τ ∗, σ∗) defined in (5.2) are

τ ∗ = inf{t ∈ [0, T ], D∗ > 0} ∧ T, (5.3)

σ∗ = inf{t ∈ [0, T ], U∗ > 0} ∧ T. (5.4)
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c) The function u is a primitive of v.

The last two claims are proven by, informally speaking, differentiation. We remark that
the arguments used in this paper are the most similar to the ones wielded by us in this
chapter.

• [Boetius (2005)] The author pose a finite horizon problem (with terminal time T ). The
underlying process is an Itô-diffusion. The set A of admissible controls are real processes
(U,D) (with different notation) defined the same way as Definition 3.2.1 with the restric-
tion that UT −DT has second moments. The controlled process, starting at time t0, is a
strong solution of the SDE:

dXt = b(s,Xs)ds+ dUs − dDs + σ(s,Xs)
TdWs, Xt0 = x, σ and W are multidimensional.

The dynamic cost function is a stochastic process Y x,U,D
t satisfying:

dY x,U,D
s = −g(s,Xs, Y

x,U,D
s , Zs)ds+ aTs dCs + ZsdWs, ZT = h(XT ).

The control problem consists in determining the function u and control (U∗, D∗) ∈ A
such that:

u(t, x) := u(x) = ess inf
(U,D)∈A

Y x,D,U
0 = Y x,D∗,U∗

0 .

The associated Dynkin game is of the form (R is the set of stopping times):

v(x) = v+(x) := ess inf
σ∈R

ess sup
τ∈R

Rx
0(σ, τ) = ess sup

τ∈R
ess inf
σ∈R

Rx
0(σ, τ) = v−(x).

Clearly, the equalities are proved in the paper. The process Rx
t depends on the partial

derivates of g (we omit its explicit definition because it requires the addition of more
auxiliary processes). The main result is that if there is a an optimal admissible control
(σ∗, τ ∗) for the control problem then the times (σ∗, τ ∗) defined as the first times that
the control is strictly greater than U∗

t0
, D∗

t0
respectively form a Nash equilibrium for the

Dynkin game. Moreover, the function v is the spatial derivate of u. The hearth of the
proof lies again, informally speaking, differentiation, that is, by analytic arguments the
author proves that

v− ≤ v+, △−u ≤ △+u,

△+ u ≤ v−, v+ ≤ △−u.

Here, △−u,△+u denote the upper right and lower left Dini derivates of the function u.
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• [Guo ad Tomecek (2008)] A connection between three problems is stablished. The frame-
work is quite general and by adding more restrictions (that is (5.5), (5.6)), the first
statement of Theorem 5.2.1 can be deduced from this paper (assuming that the cost
function is strictly concave and continuously differentiable). The set of starting point can
be an interval, however to not indulge in the explanation of technical details, we assume
in this brief resume that it is R. The first problem is a singular control problem similar
to 2.7.2, in this case, in this case for each departing point y, the value function is defined
as:

V (y) = sup
(U,D)∈Ay

J(U,D, y)

= sup
(U,D)∈Ay

E

(∫ ∞

0

Π(s, y + U+
s −D+

s )ds−
∫
[0,∞)

γ+(s)dUs −
∫
[0,∞)

γ−(s)dDs

)
.

The set of controls Ay are defined again as the pair of càdlàg adapted increasing processes
with the condition

U0 = D0 = 0. (5.5)

The hypotheses are;

– The uncontrolled process gives a finite reward, that is

E

(∫ ∞

0

|Π(s, y)|ds
)

< ∞. (5.6)

– The function Π is strictly concave, continuously differentiable in the state space
almost surely.

– A similar condition as the one we will use in this chapter holds (see (5.10)), that is

E

(∫ ∞

0

|Πy(s, y)|ds
)

< ∞.

– The processes γ+, γ− are adapted, non-negative and its sum is greater than zero
almost surely.

The adjoint Dynkin game is similar to 2.8, but clearly, in our case γ+, γ− are constants
(this restriction gives us enough tools to study the smoothnes of the Dynkin game). The
authors obtain a third adjoint problem, that is, an optimal switching control problem.
To define it, it is necessary to define the set of switching controls. A switching control
is a pair α = (τn, κn)n≥0 such that {τn} is a strictly increasing sequence of stopping
times that strats at zero and converges almost surely to infinity. The discrete process
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κn only takes values in in {0, 1} and κn+1 ̸= κn for all n. and κn ∈ Fτn (it represents
a couple of regimes). The regime indicator function It starts at κ0 and its value is κn

for t ∈ (τn, τn+1]. The set B of controls for this problem are random functions functions
α(z) = (τn(z), κn(z)), z ∈ R with adequate measurability and integrability conditions.
The switching problem is of the form:

m∗(z, κ) := sup
α∈B,κ0=κ

m+(z, α) = sup
α∈B,κ0=κ

E

(∫ ∞

0

Πz(s, z)Isds−
∞∑
n=0

γ(τn, κn)

)
,

with γ(τ, κ) = γ+(τ)1κ=1 + γ−(τ)1κ=0. The main results can be summed up as:

– There is a biyection between the singular controls and the switching controls. An op-
timal switching control gives (with the biyection), an optimal control for the singular
control problem.

– Abusing the notation, denote J(0, 0, y) as the reward obtained by not controlling the
process, the function V (y)+J(0, 0, y) can be expressed as an integral of z depending
on m∗

+(z, 0).

– The derivate of V , generalizing the fact that the derivative of a singular control
problem constitutes typically the value of an associated stopping problem, is the
value of a Dynkin game (the game defined similarly to [Karatzas and Wang (2003)])
and its value is

m∗
+(z, 1)−m∗

+(z, 0).

The equilibrium point is obtained similarly to (5.3) but in this case T = ∞.

The hearth of the proofs are probabilistic in nature, if the underlying process is Lévy for
example, this is translated to use the strong markov property and translation stationarity.

• [Guo and Tomecek (2009)] This paper uses the theory established in
[Guo ad Tomecek (2008)] to solve explicitly a discounted singular control problem and
its adjoint optimal switching problem, they also study the smooth-fit. The framework is
the following:

– There is a fixed interval [a, b] ⊂ (−∞,∞) where the controls are defined and the
singular problem is

U(x, y) := sup
(U,D)∈A′

y

J(x, y, U,D),

with

J(x, y, U,D) := E

(∫ ∞

0

e−ρsH(Ys)X
x
s ds−

∫ ∞

0

e−ρs(K1dUs +K0dDs)

)
,
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– subject to:

Yt := y + Ut −Dt, y ∈ [a, b],

dXx
t = µXx

t dt+
√
2σXx

t dWt, X0 = x > 0,

H : [a, b] → R is concave, K1 +K0 > 0, K1 > 0, µ < ρ.

– The supremum is taken over all controls (U,D) ∈ A′
y, where are controls that start at

zero, defined as (5.5) with integrability conditions to not make J(x, y, U,D) infinite.

The roadmap the authors follow is:

– Postulate the adjoint switching problem.

– Its solution is obtained through two HJB equations (one for each state).

– The bijection between the singular controls and the switching policies is used to
define an optimal singular control. Two functions F and G are obtained explicitly,
such that the optimal control is a reflection on a set depending on the values

Xx
t − F (Yt), Xx

t −G(Yt).

– Necessary conditions are given for the smooth fit (with counterexamples when they
not hold).

• [Yang (2014)] In this work, the author investigates the existence of an optimal reflecting
control for a singular discounted two-sided control problem when the underlying process
is a multidimensional Brownian motion and the controls are exercised only in the last
coordinate. To be more specific, the process X = {Xt}t≥0 is of the form:

dXit = µidt+
m∑
j=1

σijW
j
t , j = 1, . . . , n− 1,

Xnt = µndt+
m∑
j=1

σnjW
j
t + Ut −Dt,

X0 = x,

where W 1, . . . ,Wm are independent Brownian motion processes and m ≥ n. Clearly,
the authors give adequate conditions for the process not to degenerate, furthermore the
admissible controls (defined similarly to Definition 3.2.1) (U,D) must satisfy that the last
coordinate of the controlled process remains in a compact set. The cost function, which
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the propuse is to minimize it, is of the form:

J(x, U,D) := E

(∫ ∞

0

e−ρsh(X)ds+

∫ ∞

0

e−ϵs(f1(Xs)dU
c
s + f2(Xs)dD

c
s)

)
+ Ex

( ∑
0≤t≤∞

e−ϵt

(∫ Xnt−+△Ut

Xnt−

f1(X1t, . . . , X(n−1)t, Xnt− + y)dy

))

+ Ex

( ∑
0≤t≤∞

e−ϵt

(∫ Xnt−−△Dt

Xnt−

f1(X1t, . . . , X(n−1)t, Xnt− + y)dy

))
.

We make a brief explanation of these types of costs. To sum it up, with this cost the
following important property holds: there is no difference in cost between pushing the
process at time t an amount y or the limit when h → 0 of the cost paid when we push
the process at time t an amount y − o(h) and at time t+ o(h) we push it y.
The adjoint Dynkin game is similar to 5.2 but now the derivate is only with respect to
the last variable. The authors postulate necessary conditions so that the Dynkin game,
using HJB equations, defines two curves a, b that give an optimal reflecting control for
the singular control problem. We must remark that the difference between the maps h

and y →
∫ y

a(x)
hxn(x1, . . . , xn, u)du, with a(x) the projection of the curve a in the last

coordinate, must satisfy a series of hypotheses that are given in the form of limits of HJB
equations (again conditions are given for these hypotheses to hold).

• [Dianetti and Ferrari (2023)] A multidimensional singular control problem, where the
costs of the controls are constant and equal to 1, is posed. The underlying process is
a multidimensional diffusion. The only controlled coordinate is the first one, to be more
specific the controlled diffusion is the only strong solution to the SDE:

dX1,x
t = (a1 + b11X

1,x
t )dt+ σ(X1,x

t )dW 1
t + dUt − dDt, X1

0− = x1,

dX i,x
t = bi(X

1,x
t )dt+ σ(X i,x

t )dW i
t , X i,x

0− = xi, i = 2, . . . , d.

Here, W = (W 1, . . . ,W d) is a Brownian motion. The volatility is assumed to be constant
or linear with state space Rd and Rd

+ respectively. The main result, denoting u the value
function, is that the optimal control is to reflect in the set (see 2.5.2)

W = {x : |ux1(x)| ≤ 1}.

A HJB equation is used (which defines an adjoint Dynkin game). Observe that, with an
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abuse of notation, if we differentiate with respect to x1, the expression

L(u)(x)− ϵu(x) + c(x),

we obtain

L(ux1)(x)− ϵux1(x) + cx1(x) +
∑
i

bi,x1(x)uxi
(x) +

∑
i,j

uxixj
(x)σx1(x)σ(x).

Thus the adjoint Dynkin game must not only take into account cx1 (due to the influence of
the drift) and the underlying process cannot be the same (due to the influence of the non
constant volatility). We remark that the discount is greater than a constant depending on
the parameters of the diffusion (thus rendering the validity of the abelian limit unclear).
Examples are given but not in numerical form.

• [Federico et. al.(2023)] Contrary to the rest of the resumes of the articles mentioned we
proceed to talk about the probability space defined in the paper due to the importance
of defining exactly what we mean by information here. A two dimensional discounted
control problem where the first variable is controlled is posed. In a complete probability
space {Ω,F ,P), a Brownian motion W = {W}t is defined and its P augmented filtration
is denoted as FW = {FW

t }t≥0. There is an unknown trend µ independent of W that can
take two possible real values µ0 < µ1. The uncontrolled process (with unknown drift)
follows the stochastic differential equation:

dSt = µdt+ ηdWt, S0 = x, η > 0.

The augmented natural filtration of the process S = {St}t≥0 is denoted FS = {FS
t }t≥0

and the admissible controls are adapted to that filtration and defined in the usual
sense. The authors define the belief process Πt := P(µ = µ1|FS

t ), t ≥ 0 (see
[Johnson and Peskir (2017)] and [Lipster and Shiryaev (2001), Section 4.2,]) and the con-
trolled process as the solution of:

dXU,D
t = (µ1Πt + µ0(1− Πt))dt+ ηdŴt + dUt − dDt, XU,D

0− = x ∈ R,

dΠt =
µ1 − µ0

η
Πt(1− Πt)dŴt, Π0 = π ∈ (0, 1).

Here Ŵ = {Ŵt}t≥0 is an FS Brownian motion (see [Lipster and Shiryaev (2001), Theorem
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4.1]). The value of the singular control problem is defined as:

V (x, π) = inf
(U,D)∈A

E

(∫ ∞

0

e−ϵt(c(XU,D
t )dt+ qudUt + qddDt)

)
.

Obviously, reasonable properties are assumed for c. To obtain the optimal control, the
authors use an adjoint Dynkin game. Due to the nature of the process and the fact that
c only depends on one variable, the Dynkin game is of the form

v(x, π) = inf
σ
sup
τ

E(x,π)

(∫ ∞

0

e−ϵtc′(Xt)dt− que
−ϵτ1τ≤σ + qde

−ϵσ1τ>σ

)
.

The nature of the process does not allows to obtain, at least not in an obvious way, enough
properties of the function v to allow the determination of an optimal control. Therefore,
the authors transform the measure P in the following way. Define the process Φ := Πt

1−Πt
,

called likehood ratio process (see [Johnson and Peskir (2017)]) and the measure QT as
the equivalent measure to P with Radon-Nykodim derivate:

∂QT

∂P
= exp

(
−µ1 − µ0

η

∫ T

0

ΠsdWs −
1

2

∫ T

0

(
µ1 − µ0

η

)2

Π2
sds

)
.

Then pass the limit T → ∞ and obtain a probability measure Q. Under this new law, a
new singular control problem is posed. The underlying process simpler in nature. This
allows the author to prove that there is an optimal reflecting control in the new singular
control problem (again using an adjoint Dynkin game). Finally an explicit relation is
proved between the two singular control problems.

5.2 Setting

For the reader’s convenience we rewrite some of the properties of the Lévy processes discussed
in 2.2.4.

5.2.1 Lévy processes, controls and cost functions

First, let us recall some of the concepts discussed in 2.2.4. Let X = {Xt}t≥0 be a Lévy process
with finite mean defined on a stochastic basis B = (Ω,F ,F = (Ft)t≥0,Px) departing from X0 =

x. Assume that the filtration is right-continuous and complete (see [Jacod and Shiryaev (2003),
Definition 1.3]). Denote by Ex the expected value associated to the probability measure Px,
let E = E0 and P = P0. The Lévy-Khintchine formula characterizes the law of the process,
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stating
ϕ(z) = log

(
E(ezX1)

)
, z = iθ ∈ iR,

with
ϕ(z) =

σ2

2
z2 + zµ+

∫
R
(ezy − 1− zy)Π(dy),

where µ = E(X1) ∈ R, σ ≥ 0 and Π(dy) is a non-negative measure (the jump measure) that
satisfies in our case

∫
R(y

2 ∧ |y|)Π(dy) < ∞. This Lévy process, being a special semimartin-
gale (see [Jacod and Shiryaev (2003), Chapter II, 2.29]), can be expressed as a sum of three
independent processes

Xt = X0 + µt+ σWt +

∫
[0,t]×R

y Ñ(ds, dy), (5.7)

where Ñ(ds, dy) = N(ds, dy)− dsΠ(dy) is a compensated Poisson random measure, N(ds, dy)

being the jump measure constructed from X and {Wt}t≥0 is an independent Brownian motion.
In the case when X has bounded variation, we denote {S+

t }t≥0, {S−
t }t≥0 the couple of inde-

pendent subordinantors starting at zero such that for all t ≥ 0

Xt = x+ S+
t − S−

t .

For general references on Lévy processes see [Bertoin (1996), Kyprianou(2006), Sato (1999)].
We proceed to define the set of admissible controls, in this case there is no stochastic differential
equation due to the fact that Lévy processes have stationary increments. Although, already
mentioned, we define again the definition admissible controls and reflecting controls for this
particular family of processes.

Definition 5.2.1. An admissible control is a pair of non-negative F-adapted processes (U,D)

such that:

(i) Each process U,D : Ω× R+ → R+ is right continuous and nondecreasing almost surely.

(ii) For each t ≥ 0 the random variables Ut and Dt have finite expectation.

We denote by A the set of admissible control.

A controlled Lévy process by the pair (U,D) ∈ A is be defined as

XU,D
t = Xt + Ut −Dt, X0 = x, U0 = u0, D0 = d0. (5.8)

For a < b let {Xa,b
t : t ≥ 0} be a process defined on (Ω,F ,F,Px) that follows (5.8) where

Ua,b
t ,−Da,b

t are the respective reflections at a and b, called reflecting controls. At time zero, the
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reflecting controls are defined as Ua,b
0 = (a − x)+ and Da,b

0 = (x − b)+ and from now on are
denoted ua,b

0 and da,b0 respectively. Moreover Ua,b, Da,b satisfy

∫ ∞

0

(Xa,b
t − a)dUa,b

t = 0,

∫ ∞

0

(b−Xa,b
t )dDa,b

t = 0. (5.9)

There is an unique strong solution that satisfies (5.8) and is also a solution of the Skorokhod
(5.9) problem (see [Andersen et al. (2015)]). We remark that for every exponential random
variable e(ϵ) with parameter ϵ > 0 independent of the process X and every t > 0 the random
variables Ua,b

e(ϵ) U
a,b
t , Da,b

e(ϵ), Da,b
t , have finite mean as a consequence of [Andersen et al. (2015),

Theorem 6.3] (more specifically see Proposition 5.3.1). When the process has bounded variation
we also define

(U0,0
t , D0,0

t ) = (S−
t , S

+
t ), for t > 0, (U0,0

0 , D0,0
0 ) = (−min{x, 0},max{x, 0})

as a reflecting control. Observe that formula (5.8) holds with XU0,0,D0,0

t = 0, for all t ≥ 0.

From now on qu, qd are positive constants, and we refer to them as lower barrier cost and
upper barrier cost respectively. Also, denote q = qu + qd.

Definition 5.2.2. A cost function is a convex function c : R → R+ such that

(i) reaches its minimum at zero,

(ii) there exist a pair of constants M ≥ 0 and N > 0 that satisfy

c(x) +M ≥ N |x|, for all x ∈ R,

(iii) for every δ > 0 there is a convex function cδ ∈ C2(R) with minimum at zero such that
∥c− cδ∥∞ < δ and for every ϵ > 0, x ∈ R

Ex

(∫ ∞

0

|c′δ(Xs)|e−ϵsds

)
< ∞. (5.10)

Remark 5.2.1. To verify (5.10), if for every δ > 0 there is a function fδ such that |c′δ(x)| =
fδ(|x|) and a constant Kδ > 0 such that fδ(x + y) ≤ Kδfδ(x)fδ(y), according to [Sato (1999),
Theorem 25.3, Lemma 25.5 and Theorem 30.10], it is enough to check∫

|x|≥1

fδ(|x|)Π(dx) < ∞.
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5.2.2 The ergodic and discounted control problems

Definition 5.2.3. Given x ∈ R and a control (U,D) ∈ A, we define the ergodic cost function

J(x, U,D) = lim sup
T→∞

1

T
Ex

(∫ T

0

c(XU,D
s )ds+ quUT + qdDT

)
,

and the ergodic value function

G(x) = inf
(U,D)∈A

J(x, U,D).

Definition 5.2.4. Given x ∈ R, a control (U,D) ∈ A and a fixed ϵ > 0, we define the
ϵ-discounted cost function

Jϵ(x, U,D) = Ex

(∫ ∞

0

e−ϵs
(
c(XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
,

and the ϵ-discounted value function

Gϵ(x) = inf
(U,D)∈A

Jϵ(x, U,D).

5.2.3 Main results

The most important results of the article are the link between the discounted problem and a
Dynkin game, the optimality of reflecting controls for the discounted problem (see Theorem
5.2.1) and the abelian limits which give an optimal reflecting control for the ergodic problem
(see Theorem 5.2.2).

Theorem 5.2.1. Under the same notations as (5.2.4) there is a pair a∗ϵ ≤ 0 ≤ b∗ϵ such that
Gϵ(x) = Jϵ(x, U

a∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ). Moreover if c ∈ C2(R), then a∗ϵ < 0 < b∗ϵ and the function Gϵ is a

primitive of the function

Vϵ(x) = sup
a≤0

inf
b≥0

Ex

(∫ τ(a)∧σ(b)

0

c′(Xs)e
−ϵsds + qde

−ϵτ(a)1τ(a)≤σ(b) − que
−ϵσ(b)1σ(b)<τ(a)

)
,

with
τ(a) = inf{t ≥ 0: Xt ≤ a}, σ(b) = inf{t ≥ 0: Xt ≥ b}. (5.11)

Furthermore a∗ϵ , b
∗
ϵ satisfy:

a∗ϵ = sup{x < 0, V (x) = −qu}, b∗ϵ = inf{x > 0, V (x) = qd}.

91



Theorem 5.2.2. The ergodic value function of Definition 5.2.3 satisfies:

(i) limϵ↘0 ϵGϵ = G uniformly in compacts.

(ii) The ergodic value function is constant.

(iii) There is a pair a∗ ≤ 0 ≤ b∗ such that G(x) = J(x, Ua∗,b∗ , Da∗,b∗), for all x ∈ R.

5.3 Preliminary results

In order to solve the optimal control problems for the cost functions defined above, the usual
approach, when the process is a diffusion, is to formulate a verification theorem with a Hamilton-
Jacobi-Bellman (HJB) equation (see [Shreve et al. (1984), Harrison(1985)], or more recently,
for two-sided problems, [Kunwai et al. (2022), Christensen et al. (2023)]). We use a similar
approach for Lévy process. First we show that the problems do not degenerate.

Proposition 5.3.1. For every ϵ > 0, the functions Gϵ and G are finite. Moreover Gϵ is upper
continuous.

Proof. For the ergodic value, finitude is deduced by taking a reflecting control and using
[Andersen et al. (2015), Corollary 6.6]. For the ϵ-discounted value, from (70) in Theorem 6.3
of the same article, we have for (U0,b, D0,b), b > 0:

bD0,b
t ≤ b2 + x2 + 2

∫ t

0+
X0,b

s− dXs +
σ2

2
t

+
∑
s≤t

(
1∆Xs≥b(2∆Xsb+ b) + 1∆Xs≤−b(b

2 − 2b∆Xs) + 1|∆Xs|<b∆X2
s

)
. (5.12)

Therefore, using that the process

t →
∫ t

0+
X0,b

s− d(Xs − sEX1)

is a martingale (see Lemma A.2.1):

bEx(D
0,b
t ) ≤ b2 ++x2 + 2bE|X1|+

σ2

2
t

+ t

∫
R

(
1y≥b(2yb+ b) + 1y≤−b(b

2 − 2by) + 1|y|<by
2
)
Π(dy). (5.13)

Thus, integrating by parts and by taking again a reflecting control we deduce the finitude. For
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the upper continuity, first notice

Gϵ(x) = inf
(U,D)∈A

E

(∫ ∞

0

e−ϵs
(
c(x+XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
.

Therefore for this proposition we only work with the probability measure P. Now fix x ∈ R
and r > 0. Take (U,D) ∈ A such that

J(x, U,D)− r ≤ Gϵ(x).

Take y ∈ R and let (Uy, Dy) ∈ A be defined as

Dy
0 = d0 + (y − x)+, Uy

0 = u0 + (x− y)+, Dy
t = Dt, Uy

t = Ut for all t > 0.

It is clear J(x, U,D)− J(y, Uy, Dy) = qu(x− y)+ + qd(y − x)+. Therefore

lim sup
y→x

Gϵ(y) ≤ J(x, U,D) ≤ Gϵ(x)− r.

The proof is concluded because r is arbitrary.

To avoid redundancy in the hypotheses of the theorems of this section we need the following
proposition.

Proposition 5.3.2. (i) Assume that X has unbounded variation. If a function u ∈ C2(R)
linear outside an interval, then Lu is continuous and

Lu(x) = µu′(x) +

∫
R
(u(x+ y)− u(x)− yu′(x)) Π(dy) +

σ2

2
u′′(x).

(ii) On the other hand, if the process X has bounded variation and a function u ∈ C1(R) linear
outside a compact set, then Lu is continuous and

Lu(x) = µu′(x) +

∫
R
(u(x+ y)− u(x)− yu′(x))Π(dy).

Proof. First we assume that the process has unbounded variation. Observe that∫
R
|u(x)− u(x+ y)− yu′(x)|Π(dy) ≤ sup

y∈R
(|u′′(y)|)

∫
|y|<1

y2Π(dy)

+ 2 sup
y∈R

(|u′(y)|)
∫
|y|≥1

|y|Π(dy) < ∞, for all x ∈ R. (5.14)
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Similarly observe that for all t ≥ 0,

∑
0≤s≤t

|u(Xs)− u(Xs−)−∆Xsu
′(Xs−)|

≤ sup
y∈R

|u′(y)|
∑

0≤s≤t, |∆Xs|≥1

2|∆Xs|+ sup
y∈R

|u′′(y)|
∑

0≤s≤t, |∆Xs|<1

∆X2
s . (5.15)

thus the process

∑
0≤s≤t

(u(Xs)− u(Xs−)−∆Xsu
′(Xs−))− t

∫
R
(u(x+ y)− u(x)− yu′(x))Π(dy).

is a martingale for all x ∈ R. Using this result, the inequality (5.14), Itô formula we deduce
that we have to prove that the next expression goes to zero when t → 0:

1

t
E

(∫ t

0

µ(u′(x+Xs−)− u′(x)) +
σ2

2
(u′′(x+Xs−)− u′′(x))ds

+

∫ t

0

∫
R
(u(x+Xs− + y)− u(x+Xs−)− yu′(x+Xs−))dΠ(y)ds

+

∫ t

0

∫
R
(−u(x+ y) + u(x) + yu′(x))dΠ(y)ds

)
.

By dominated convergence we deduce that the limit is in fact zero. To prove the continuity it
is enough to prove that the map

x →
∫
R
(u(x+ y)− u(x)− yu(x))Π(dy) (5.16)

is continuous. Using Taylor’s remainder theorem:∫
R
(u(x+ y)− u(x)− yu′(x))Π(dy) =∫

R

(∫ x+y

x

u′′(z)(z − x)dz

)
Π(dy) =

∫
R

(∫ y

0

u′′(u+ x)u du

)
Π(dy).

Therefore the continuity of the map (5.16) is obtained because u′′ is uniformly continuous with
compact support.
For the case of bounded variation the proof is similar, however instead of (5.14) and (5.15) we
use the inequalities∫

R
|u(x)− u(x+ y)− yu′(x)|Π(dy) ≤ 2 sup

y∈R
(|u′(y)|)

∫
R
|y|Π(dy) < ∞,
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∑
0≤s≤t

|u(Xs)− u(Xs−)−∆Xsu
′(Xs−)| ≤ sup

y∈R
|u′(y)|

∑
0≤s≤t

2|∆Xs|,

respectively for all x ∈ R and t ≥ 0. Moreover, instead of using the classical Itô formula,
one should use the formula for processes of finite variation see [Protter (2005), Theorem 31].
Finally, for the continuity have to prove that the function:

x → µu′(x) +

∫
R

(
u(x+ y)− u(y)− yu′(x)

)
Π(dy) (5.17)

is continuous. Using the mean value theorem it can be seen that the function (5.17) is continuous
(the integral

∫
R yΠ(dy) is well defined and finite).

Theorem 5.3.3. Consider ϵ > 0, δ > 0, c a cost function (with associated function cδ), and a
convex function u in the domain of the infinitesimal such that

Lu(x)− ϵu(x) + cδ(x) ≥ 0, −qu ≤ u′(x) ≤ qd, for all x ∈ R. (5.18)

Furthermore, assume that the function is linear outside an interval and

(i) if the process is of unbounded variation, u ∈ C2(R) .

(ii) if the process is of bounded variation, u ∈ C1(R).

Then, under these conditions:

lim inf
T→∞

ϵ

T
Ex

(∫ T

0

u(XU,D
s )ds

)
≤ lim inf

T→∞

1

T
Ex

(∫ T

0

cδ(X
U,D
s )ds+ quUT + qdDT

)
,

for all controlled process XU,D that satisfy the equality

lim inf
T→∞

1

T
Ex

(
u
(
XU,D

T

))
= 0. (5.19)

Proof. Consider first case (i). Define the martingales {M (i)
t }t≥0 (i = 1, 2) by

M
(1)
t = σWt +

∫
(0,t]×R

y Ñ(ds, dy),

M
(2)
t =

∫
(0,t]×R

(
u(XU,D

s− + y)− u(XU,D
s− )− yu′(XU,D

s− )
)
Ñ(ds, dy).
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Apply Itô formula:

u(XU,D
T )− u(x+ u0 − d0)

=

∫ T

0+
u′(XU,D

t− )dXU,D
t +

σ2

2

∫ T

0+
u′′(XU,D

t− ) dt+M
(2)
T

+

∫
(0,T ]×R

(
u(XU,D

t− + y)− u(XU,D
t− )− yu′(XU,D

t− )
)
dsΠ(dy)

+
∑
0<s≤t

u(XU,D
s )− u(XU,D

s− +△Xs)− u′(XU,D
s− )(△Us −△Ds)

=

∫ T

0+
Lu(XU,D

t− ) dt+

∫ T

0+
u′(XU,D

t− ) dM
(1)
t +M

(2)
T

+

∫ T

0+
u′(XU,D

t− )(dU c
t − dDc

t )

+
∑
0<s≤t

u(XU,D
s )− u(XU,D

s− +△Xs)

≥
∫ T

0+
(ϵu− cδ) (X

U,D
t− ) dt− qudUT − qddDT +M

(3)
T , (5.20)

where we used both conditions in (5.18), M (3) is a martingale and the equality XU,D
s = XU,D

s− +

△Xs +△Us −△Ds. We now take expectation to obtain

Ex

(
u(XU,D

T )
)
− u(x− d0 + u0) + Ex

(∫ T

0+
cδ(X

U,D
t− )dt+ quUT + qdDT

)
≥ Ex

∫ T

0+
ϵu(XU,D

t− ) dt.

Replacing the integration limit by 0 instead of 0+ and XU,D
t instead of XU,D

t− , dividing by T and
taking T → ∞ we conclude the proof for the case of unbounded variation, in view of (5.19).
The case (ii) of bounded variation follows similarly applying Itô-Meyer formula for processes of
finite variation (see [Protter (2005), Chapter II, Theorem 31]).

The candidate u proposed in the following sections is linear outside an interval. This
property allows to prove that the reflection controls are optimal.

Theorem 5.3.4. Under the hypothesis of Theorem 5.3.3, if there is a pair of thresholds a <
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0 < b such that u also satisfies
Lu(x)− ϵu(x) + cδ(x) = 0, for all x ∈ (a, b),

u(x) = u(a) + (a− x)qu, for all x ≤ a,

u(x) = u(b) + (x− b)qd, for all x ≥ b,

then,

lim sup
T→∞

Ex
1

T

(∫ T

0

cδ(X
a,b
s ) ds+ quU

a,b
T + qdD

a,b
T

)
= lim sup

T→∞

ϵ

T
Ex

(∫ T

0

u(Xa,b
s ) ds

)
.

Proof. In (5.20), as Xa,b
s− ∈ (a, b), we have∫ T

0+
Lu(Xa,b

t− ) dt =

∫ T

0+
(ϵu− cδ)(X

a,b
t− ) dt.

Furthermore, we have dUa,b
t = dDa,b

t = 0 when Xa,b
t ∈ (a, b) and u′(x) = −qu for x ≤ a and

u′(b) = qd for x ≥ b. So, by using Xa,b
t −Xa,b

t− = 0 in the support of (Ua,b)c, (Da,b)c:∫ T

0+
u′(Xa,b

t− )(d(Ua,b)ct − d(Da,b)ct) = −qud(U
a,b)cT − qdd(D

a,b)cT .

On the other hand u(Xa,b
s )−u(Xa,b

s− +△Xs) = −qu△Us− qd△Ds for all s > 0. So we have an
equality in (5.20). Taking limsup we obtain the result, because u(Xa,b

T ) is a bounded quantity
because u(x) is continuous.

We proceed to show that in the discounted problem if a candidate is found it is the exact
solution.

Theorem 5.3.5. Let ϵ > 0 and δ > 0, suppose that c is a cost function and there is convex
function u under the same hypothesis as Theorem 5.3.3. Then we have:

u(x) ≤ Ex

(∫ ∞

0

e−ϵs
(
cδ(X

U,D
s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
for all controlled processes XU,D that satisfy

Ex

(∫ ∞

0

e−ϵsu(XU,D
s )ds

)
< ∞. (5.21)

Proof. Observe that we can assume Ex

(∫∞
0

e−ϵscδ(X
U,D
s )ds

)
< ∞, otherwise the claim is trivial.
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Let eϵ be an exponential random variable with parameter ϵ, independent of X. We now apply
Itô’s formula on the random interval [0, eϵ], that, with the same arguments as in the proof of
Theorem 5.3.3, give

Ex

(
u(XU,D

eϵ )− u(x− d0 + u0)
)
≥ Ex

(∫ eϵ

0+

(
(ϵu− cδ)(X

U,D
s− )

)
ds− qudUeϵ − qddDeϵ

)
. (5.22)

On the other hand for every stochastic process Ys with finite variation independent of eϵ and
g(x) continuous we have

Ex

∫ eϵ

0+
g(XU,D

s− )dYs = Ex

(∫ ∞

0+
ϵe−ϵu

(∫ u

0+
g(XU,D

s− )dYs

)
du

)
= Ex

(∫ ∞

0+

(∫ ∞

s

ϵe−ϵug(XU,D
s− )du

)
dYs

)
= Ex

(∫ ∞

0+
e−ϵsg(XU,D

s− )dYs

)
.

Therefore the inequality (5.22) is equivalent to:

0 ≥ Ex

(∫ ∞

0+
e−ϵs

(
−qudUs − qddDs − cδ(X

U,D
s− )ds

))
+ u(x− d0 + u0).

Due to the fact that X,U,D are càdlàg, again, we rewrite the inequality as

0 ≥ Ex

(∫ ∞

0

e−ϵs
(
−qudUs − qddDs − cδ(X

U,D
s )ds

))
+ u(x− d0 + u0).

Thus, to finish the proof it is enough to prove

u(x)− quu0 − qdd0 ≤ u(x− d0 + u0),

which is equivalent to the inequality:

0 ≤ u(x+ u0 − d0)− u(x) + quu0 + qdd0,

which is clearly true because −qu ≤ u′ ≤ qd, concluding the proof of the Theorem.

Finally we formulate the discounted version of Theorem 5.3.4. We omit the proof because
it is exactly the same as in the ergodic version except in the case where x ∈ (a, b)c, the linearity
of u(x) must be used.

Theorem 5.3.6. Under the hypothesis of Theorem 5.3.5, if there is a couple a < b such that u
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also satisfies: 
Lu(x)− ϵu(x) + cδ(x) = 0, for all x ∈ (a, b),

u(x) = u(a) + (a− x)qu, for all x ≤ a,

u(x) = u(b) + (x− b)qd, for all x ≥ b,

Then,

Ex

(∫ ∞

0

e−ϵs
(
cδ(X

a,b
s )ds+ qudU

a,b
s + qdD

a,b
s

)
+ quu

a,b
0 + qdd

a,b
0

)
= u(x).

5.4 The associated Dynkin game

Reduction of control problems to optimal stopping problems is a possible solving control, an
initial example being the proposal by [Karatzas (1983)]. In this example, a singular con-
trol problem that satisfies a verification theorem similar to Theorem 5.3.3 above is solved
by finding the solution of an associated optimal stopping problem. In our situation, due
to the nature of our two- sided problem, the associated problem turns out to be a Dynkin
game. The relationship between singular control problems and Dynkin games has been
proven in [Karatzas and Wang (2003)] for finite horizon problems, [Boetius (2005)] for dif-
fusions and [Guo and Tomecek (2009)] in a more general setting. In fact as an alternative
path to show the relationship between the control problems, the results of this last article
could be adapted for Lévy processes if we assume further restrictions on the cost function
(see [Guo ad Tomecek (2008), equation (13)]). Apart from the aformetioned articles, our main
references are [Ekström and Peskir(2008), Peskir(2009)] from where we also borrow some no-
tation.

5.4.1 Introduction and properties

In this section we work with the function cδ appearing in Definition 5.2.2. To ease the notation
we omit the δ, denoting it by c. The underlying process X is the Lévy process with finite
expectation defined in (5.7), ϵ is a fixed positive real number. Given the discounted control
problem with value function in Definition 5.2.4, the auxiliary problem will be a discounted
Dynkin game with an integral cost, that we formulate through a three-dimensional process.
Consider then {Zt = r + t}t≥0 and

{
It = w +

∫ t

0
e−ϵZsc′(Xs)ds

}
t≥0

, and the process

X = {Xt = (Xt, It, Zt)}t≥0, X0 = x = (x,w, r).
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The process X is strong Markov with respect to the original filtration F = {Ft}. As usual denote
by Px and Ex the probability measure and expected value respectively when the process starts
at the point x. For simplicity we denote Px,0,0 as Px and Ex,0,0 as Ex. A stopping time is a
measurable function τ : Ω → [0,∞] s.t.

{ω : τ(ω) ≤ t} ∈ Ft, for all t ≥ 0.

We denote the set of stopping times as ℜ. In our setting, the first entry time to a Borel set is
a stopping time. Consider now the real functions

G1(x,w, r) = w − que
−ϵr,

G2(x,w, r) = w + qde
−ϵr,

and denote the payoff

Mx(τ, σ) = Ex
(
G1(Xτ )1{τ<σ} +G2(Xσ)1{τ≥σ}

)
.

Observe that, with the auxiliary function

Qr(τ, σ) = e−rϵ
(
qd1{τ≥σ}e

−ϵσ − qu1{τ<σ}e
−ϵτ
)
,

the payoff can be written as

Mx(τ, σ) = Ex (I(τ ∧ σ) +Qr(τ, σ)) ,

where Qr depends only on the stopping times, not on the process X. As usual we denote Q0

by Q. Again, for simplicity we denote Mx,0,0 as Mx. Define the value functions

V1(x) = sup
τ

inf
σ
Mx(τ, σ), V2(x) = inf

σ
sup
τ

Mx(τ, σ).

In this section, hitting times of translated sets play a crucial role. If γ is defined by

γ = inf{t ≥ 0: Xt ∈ A},

then the stopping time γy is

γy = inf{t ≥ 0: Xt ∈ A− y}.
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Definition 5.4.1 (ϵ-Dynkin Game). Given the process Xt = {(Xt, It, Zt)}t≥0, the functions
G1, G2, Mx, and the payoffs V1, V2 defined above, the ϵ-Dynkin game is the problem consisting
in finding two stopping times (τ ∗, σ∗) s.t.

Mx(τ, σ
∗) ≤ Mx(τ

∗, σ∗) ≤ Mx(τ
∗, σ), for all τ, σ ∈ ℜ, (5.23)

and the value function Vϵ s.t.

Vϵ(x) = V1(x) = V2(x) = Mx(τ
∗, σ∗). (5.24)

The stopping times (τ ∗, σ∗) in (5.23) constitute a Nash equilibrium.

To ease the notation we denote V1(x, 0, 0), V2(x, 0, 0) as V1(x), V2(x) respectively. Next result
is based on [Stettner (1982), Theorem 1] and [Ekström and Peskir(2008), Theorem 2.1], and
gives useful properties of our Dynkin game.

Proposition 5.4.1. The ϵ-Dynkin game of Definition 5.4.1 satisfies the following properties:

(i) The functions V1 and V2 are continuous. Furthermore, for all (x,w) ∈ R2 and r ≥ 0 it holds

V1(x) = V2(x).

From now on we denote Vϵ = V1 = V2.

(ii) Define the sets

D1 = {x ∈ R : G1(x, 0, 0) = V (x, 0, 0)}, (5.25)

D2 = {x ∈ R : G2(x, 0, 0) = V (x, 0, 0)}. (5.26)

The stopping times
τ ∗ = inf{t ≥ 0: Xt ∈ D1} (5.27)

σ∗ = inf{t ≥ 0: Xt ∈ D2}, (5.28)

constitute a Nash equilibrium.

101



(iii) The following statements hold:

Ex

(
e−ϵ(σ∗∧t)Vϵ(Xσ∗∧t)

)
≤ Vϵ(x)− Ex

∫ σ∗∧t

0

e−ϵsc′(Xs)ds, (5.29)

Ex

(
e−ϵ(τ∗∧t)Vϵ(Xτ∗∧t)

)
≥ Vϵ(x)− Ex

∫ τ∗∧t

0

e−ϵsc′(Xs)ds, (5.30)

Ex

(
e−ϵ(τ∗∧σ∗∧t)Vϵ(Xτ∗∧σ∗∧t)

)
= Vϵ(x)− Ex

∫ τ∗∧σ∗∧t

0

e−ϵsc′(Xs)ds. (5.31)

Proof of (i). The first statement is proven in [Stettner (1982), Theorem 1]. For the second
statement we need to apply [Ekström and Peskir(2008), Theorem 2.1]. To do so, we only have
to check Ex(supt |Gi(Xt)|) < ∞, i = 1, 2. This is clear from the fact

Ex

(∫ ∞

0

|c′(Xs)|e−ϵsds

)
< ∞.

Proof of (ii). Again, from [Ekström and Peskir(2008), Theorem 2.1], the stopping times

τ ∗ = inf{u ≥ 0: G1(Xu, Iu, Zu) = V (Xu, Iu, Zu)},

σ∗ = inf{u ≥ 0: G2(Xu, Iu, Zu) = V (Xu, Iu, Zu)},

define a Nash equilibrium. In order to prove (5.27) we verify

G1(x) = Vϵ(x) ⇔ G1(x, 0, 0) = V (x, 0, 0). (5.32)

Observe that

Vϵ(x,w, r) = sup
τ

inf
σ
E

(
w +

∫ τ∧σ

0

c′(Xs)e
−ϵZsds+ qd1{τ≥σ}e

−ϵZσ

− qu1{τ<σ}e
−ϵZτ

)

= w + e−r sup
τ

inf
σ
Ex,0,0

(∫ τ∧σ

0

c′(Xs)e
−ϵsds

+ qd1{τ≥σ}e
−σϵ − qu1{τ<σ}e

−ϵτ

)
= w + e−rV1(x, 0, 0), (5.33)
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where we used the fact that, for every A ∈ B(R3)

Px,w,r((Xt, It, Zt) ∈ A) = Px,0,0((Xt, w + It, r + t) ∈ A), ∀t ∈ [0,∞),

Using (5.33) and
G1(x,w, r) = w + e−rG1(x, 0, 0).

the equation (5.32) follows. The proof of statement (5.28) is analogous.

Proof of (iii). First consider (5.29). We apply [Peskir(2009), Theorem 2.1, equation (2.28)],
and use (5.33):

Vϵ(x) ≥ Ex(Vϵ(Xt∧σ∗ , It∧σ∗ , Zt∧σ∗)) = Ex

(
e−ϵ(t∧σ∗)Vϵ(Xt∧σ∗ , 0, 0) + It∧σ∗

)
,

that is (5.29). Inequality (5.30) is proved analogously, and (5.31) follows with the same argu-
ments based on [Peskir(2009), (2.29)].

5.4.2 The value function

Its time to return to our one-dimensional setting. With a slight abuse of notation consider the
functions

Vϵ(x) = Vϵ(x, 0, 0),

G1(x) = G1(x, 0, 0) = −qu,

G2(x) = G2(x, 0, 0) = qd.

The optimal stopping times that constitute the Nash equilibrium are then

τ ∗ = inf{t ≥ 0: Vϵ(Xt) = −qu},

σ∗ = inf{t ≥ 0: Vϵ(Xt) = qd}.

Observe also that
−qu ≤ Vϵ(x) ≤ qd.

We proceed to study properties of the value function Vϵ of the ϵ-Dynkin game, that will allow
us to construct a candidate for the verification theorems of Section 5.3. The next proposition
is crucial to deduce the necessary properties of Vϵ without giving an explicit solution.

Proposition 5.4.2. The value function Vϵ is non-decreasing.
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Proof. Take x < y. Observe first that, as Q does not depend on x,

Ex

(
Q(τ ∗, σ∗

y−x)
)
= Ey

(
Q(τ ∗x−y, σ

∗)
)
= E

(
Q(τ ∗x , σ

∗
y)
)
.

Then,

Vϵ(x)− Vϵ(y) ≤ Mx(τ
∗, σ∗

y−x)−My(τ
∗
x−y, σ

∗)

= Ex

(
I(τ ∗ ∧ σ∗

y−x) +Q(τ ∗, σ∗
y−x)

)
− Ey

(
I(τ ∗x−y, σ

∗) +Q(τ ∗x−y, σ
∗)
)

= E

(∫ τ∗x∧σ∗
y

0

e−ϵs
(
c′(x+Xs)− c′(y +Xs)

)
ds

)
≤ 0,

by the convexity of c, concluding the proof.

Proposition 5.4.3. Define

a∗ϵ = sup{x : Vϵ(x) = −qu}, b∗ϵ = inf{x : Vϵ(x) = qd}.

Then,

(i) the stopping times

τ ∗ = inf{t ≥ 0: Xt ≤ a∗ϵ} = inf{t ≥ 0: Vϵ(Xt) = −qu},

σ∗ = inf{t ≥ 0: Xt ≥ b∗ϵ} = inf{t ≥ 0: Vϵ(Xt) = qd}.

constitute a Nash equilibrium, and the value function satisfies

Vϵ(x) =

−qu, for x ≤ a∗ϵ ,

qd, for x ≥ b∗ϵ .
(5.34)

(ii) Furthermore, a∗ϵ < 0 < b∗ϵ .

Proof of (i). The claim is deduced from the fact that Vϵ is increasing, −qu ≤ Vϵ(x) ≤ qd ∀x ∈ R
and the definition of τ ∗ and σ∗.

Proof of (ii). The fact that a∗ϵ ≤ 0 ≤ b∗ϵ and a∗ϵ ̸= b∗ϵ is deduced from the fact that c′(x) is
increasing, c′(0) = 0 and G1 < G2.
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Now, assume P(τ ∗ > 0) = 1 and observe for all τ ∈ ℜ:

M(τ ∗, σ) = E

(∫ τ∗∧σ

0

c′(Xs)e
−ϵsds− qu1τ<σe

−ϵτ + qd1τ≥σe
−ϵσ

)
≤ E

(∫ σ

0

|c′(Xs)|e−ϵsds+ qd1τ≥σe
−ϵσ

)
= E

(∫ σ

0

|c′(Xs)|e−ϵsds+ qde
−ϵσ

)
. (5.35)

Define σ = inf{t ≥ 0 : |c′(Xt)| − qdϵ ≥ 0}, which is strictly positive almost surely because
c′(0) = 0 and X is right continuous. For this choice of σ, E

∫ σ

0
(|c′(Xs)| − qdϵ) ds < 0, so

M(τ ∗, σ∗) ≤ M(τ ∗, σ) < qd. This implies that σ∗ is not identically zero, and consequently
b∗ϵ > 0. A similar argument shows that a∗ϵ < 0.

The following proposition provides bounds for (a∗ϵ , b
∗
ϵ). The reader should note that these

bounds clearly are not optimal, their importance lying in the fact that in the next section it
will be proven that they are all also bounds for the optimal barriers for a Dynkin game with
parameter ϵ such that 0 < ϵ ≤ ϵ . For the next proposition, for ℓ > 0, y ∈ R we define γℓ as:

γℓ = inf

{
t ≥ 0: |Xt − ℓ| ≥ ℓ

2

}
. (5.36)

Proposition 5.4.4. For ϵ small enough there is a constant L such that the optimal thresholds
of the ϵ-Dynking game (a∗ϵ , b

∗
ϵ) ⊂ [−L,L] for every ϵ ≤ ϵ.

Proof. From Definition 5.2.2, for ℓ large enough, for all x ≥ ℓ/2 we have, c′(x) ≥ N/2. Then
for all ϵ > 0:

Eℓ

(∫ γℓ

0

c′(Xs)e
−ϵsds

)
≥ N

2
Eℓ

(
1− e−ϵγℓ

ϵ

)
. (5.37)

On the other hand as

Eℓ(γ
ℓ) = E

(
inf

{
t ≥ 0: |Xt| ≥

ℓ

2

})
→ ∞ as ℓ → ∞,

we find an ℓ s.t.
Eℓ(γ

ℓ) >
2

N
(qu + qd). (5.38)

For a fixed ℓ satisfying (5.38), using dominated convergence and the fact Eℓ(γ
ℓ) < ∞ when X

is not the null process, we have that
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Eℓ

(
1− e−ϵγℓ

ϵ

)
↗ Eℓ(γ

ℓ) as ϵ → 0.

Thus, using (5.38) we can take ϵ small enough such that for every ϵ ≤ ϵ we have

Eℓ

(∫ γℓ

0

c′(Xs)e
−ϵsds

)
≥ qd + qu. (5.39)

We now take L := 3ℓ/2 and prove that for every ϵ ≤ ϵ, b∗ϵ ≤ L. Assume, by contradiction,
that b∗ϵ > L, what implies qd > V (ℓ) (to ease the notation V is the value of the ϵ-Dynkin game).
Now, by (5.31), and using that V (x) ≥ −qu we have

qd > V (ℓ) = Eℓ

(∫ γℓ

0

c′(Xs)e
−ϵsds+ e−ϵγℓ

V (Xγℓ)

)
≥ Eℓ

(∫ γℓ

0

c′(Xs)e
−ϵsds

)
− qu ≥ qd.

by (6.3), what is a contradiction. The other bound is analogous (thus L must be taken as the
one with the greater absolute value), concluding the proof.

Proposition 5.4.5. The value function Vϵ is Lipschitz continuous.

Proof. In view of (5.34) we need to consider the pairs x, y s.t. a∗ϵ ≤ x < y ≤ b∗ϵ . As in the proof
of Proposition 5.4.2, we have,

0 ≤ Vϵ(y)− Vϵ(x) ≤ My(τ
∗, σ∗

x−y)−Mx(τ
∗
y−x, σ

∗) =

E

(∫ τ∗y∧σ∗
x

0

e−ϵs(c′(Xs + y)− c′(Xs + x))ds

)
≤ sup

z∈[a∗−b∗,b∗−a∗]

|c′′(z)||y − x| E(τ ∗y ∧ σ∗
x).

We conclude the proof using the fact that τ ∗y ∧ σ∗
x is bounded by the stopping time

inf{t ≥ 0: Xt /∈ (a∗ϵ − b∗ϵ , b
∗
ϵ − a∗ϵ)},

that has finite expectation (see Corollary A.2.4).

When the process X has unbounded variation it is possible to prove the continuous differ-
entiability of the value function Vϵ. This will be necessary, in this situation, to construct a
candidate that verifies condition (i) of Theorem 5.3.3.
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Proposition 5.4.6. If the Lévy process X has unbounded variation, the function Vϵ is differ-
entiable, and

V ′
ϵ (x) = E

∫ τ∗x∧σ∗
x

0

c′′(x+Xs)e
−ϵs ds.

Furthermore, V ′
ϵ is continuous.

Proof. Take x ∈ R and h > 0. We obtain the bound

Vϵ(x+ h) ≤ Ex+h

(∫ τ∗∧σ∗
−h

0

c′(Xs)e
−ϵs ds+Q(τ ∗, σ∗

−h)

)
= E

(∫ τ∗x+h∧σ
∗
x

0

c′(x+Xs + h)e−ϵs ds+Q(τ ∗x+h, σ
∗
x)

)
.

Similarly

Vϵ(x) ≥ Ex

(∫ τ∗h∧σ
∗

0

c′(Xs)e
−ϵs ds+Q(τ ∗h , σ

∗)

)
= E

(∫ τ∗x+h∧σ
∗
x

0

c′(x+Xs)e
−ϵs ds+Q(τ ∗x+h, σ

∗
x)

)
.

Subtracting, and applying the mean value theorem, we get

Vϵ(x+ h)− Vϵ(x)

h
≤ E

(∫ τ∗x+h∧σ
∗
x

0

c′′(x+Xs + θh)e−ϵs ds

)
,

where 0 ≤ θ ≤ 1. Furthermore, If we assume

lim
h→0

E|τ ∗x+h ∧ σ∗
x − τ ∗x ∧ σ∗

x| = 0, (5.40)

then using the fact that E(τ ∗ ∧ σ∗) < ∞, c′′(x) is continuous and bounded in compacts, by
dominated convergence

lim sup
h↓0

Vϵ(x+ h)− Vϵ(x)

h
≤ E

(∫ τ∗x∧σ∗
x

0

c′′(x+Xs)e
−ϵs ds

)
.

To prove (5.40) We analyze when

τ ∗x+h ∧ σ∗
x ↓ τ ∗x ∧ σ∗

x, a.s. as h ↓ 0. (5.41)

First observe that τ ∗x+h decreases when h decreases. Now, for α > 0, denote Iα = inf0≤t≤αXt.
By the strong Markov property, we have

P(τ ∗x+h − τ ∗x > α) ≤ P(Iα > −h),
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then
lim
h↓0

P(τ ∗x+h − τ ∗x > α) ≤ lim
h↓0

P(Iα > −h) = P(Iα = 0).

We deduce that (5.41) holds when the random variable Iα has no atoms, i.e. if and only if
0 is regular for (−∞, 0). This is the situation when the process has unbounded variation (see
[Alili and Kyprianou(2005)), Proposition 7]). We conclude that (5.40) holds using (5.41) and
the fact that, for h small enough, the times in the sequence are dominated by the first exit time
of the set (a∗ − b∗, b∗ − a∗).

Similar arguments apply in the other 3 cases: when h > 0 to obtain lower bounds, and
the other two situations for h < 0. The continuity follows taking limits under dominated
convergence, with similar arguments as above.

5.5 Construction of the candidate

In this section we first give some premilinary results and then provide the proofs of Theorems
5.2.1 and 5.2.2.

5.5.1 Properties of the primitive of the value function

Using the harmonic properties of the value function Vϵ of the ϵ-Dynkin game introduced in
the previous section, we study properties one of its primitives W (W ′(x) = Vϵ(x)). Using
Proposition 5.3.2 we deduce the next remark.

Remark 5.5.1. If W is a primitive of the value function Vϵ of the ϵ-Dynkin game in Definition
5.4.1, then W is in the domain of the infinitesimal generator L, and the function x → LW (x)

is continuous.

Lemma 5.5.1. Let Vϵ be the value of the ϵ-Dynkin game of Definition 5.4.1 and W a primitive
of Vϵ. Then, the map

x → LW (x) + c(x)− ϵW (x),

(i) is constant in (a∗ϵ , b
∗
ϵ),

(ii) increases in (b∗ϵ ,∞),

(iii) decreases in (−∞, a∗ϵ).

Proof. We begin by proving (iii). For r > 0, let ηr be the stopping time defined as

ηr = inf{t ≥ 0: Xt /∈ (−r, r)}.
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For h > 0 we need to prove that the difference

lim
r→0+

E

(
e−ϵηrW (Xηr + x+ h)−W (x+ h) +

∫ ηr

0

c(Xs + x+ h)e−ϵsds

)
E(ηr)

− lim
r→0+

E

(
e−ϵηrW (Xηr + x)−W (x) +

∫ ηr

0

c(Xs + x)e−ϵsds

)
E(ηr)

is equal or smaller than zero (see [Dynkin, E. B. (1965), Chapter V, Theorem 5.2]). Fix r > 0

such that x + h + r < a∗ϵ and define the differentiable function H in a small interval of x

(differentiability can be proven using the dominated convergence theorem):

Hηr(h) : =

E

(
e−ϵηrW (Xηr + x+ h)−W (x+ h) +

∫ ηr

0

c(Xs + x+ h)e−ϵsds

)
E(ηr)

.

Then there exists a θηrh ∈ [0, 1] such that Hηr(x+ h)−Hηr(x) is equal to

h

E(ηr)

(
E

(
e−ϵηrVϵ(Xηr + x+ θηrh h)− Vϵ(x+ θηrh h) +

∫ ηr

0

c′(Xs + x+ θηrh h)e−ϵsds

))
.

From (5.29) in Lemma 5.4.1 we know that the expression is equal or smaller than zero for every
r < a∗ϵ − h − x, thus concluding the proof of (iii). The proofs of (i) and (ii) follow the same
line of reasoning using (5.30) and (5.31) instead of (5.29). This concludes the proof of the
Lemma.

5.5.2 Continuity properties of reflecting controls

To prove Theorems 5.2.1 and 5.2.2 we need results for the reflecting controls. In this subsection
we assume b > 0 and x ∈ [0, b] (implying d0,b0 = u0,b

0 = 0). Moreover, inequality (5.13) is used
when applying integration by parts.

Proposition 5.5.2. For every positive couple b, r the following inequality holds:∣∣∣b0ExD
0,b0
t − bExD

0,b̂
t

∣∣∣ ≤ 2−1|b2 − b20|

+ t

∫
|y|<r

y2Π(dy) + t|b0 − b|
(
Ex|X1|+

√
6

∫
|y|≥r

|y|Π(dy)
)
,

for all t > 0.
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Proof. According to [Andersen et al. (2015), Theorem 6.3], for every b > 0

2bD0,b(t) = x2 − (X0,b)2t + 2

∫ t

0

X0,b
s− dXs + [X,X]c(t) + J b(t), (5.42)

where J is an increasing and finite process defined by:

J b(t) =
∑
0<s≤t

φ(X0,b
s− ,∆Xs, b),

with

φ(x, y, b) =


−(x2 + 2xy), if y ≤ −x,

y2, if −x < y < b− x,

2y(b− x)− (b− x)2, if y ≥ b− x,

whose domain is the set {(x, y, b), 0 ≤ x ≤ b, y ∈ R}. Moreover 0 ≤ φb(x, y) ≤ y2 for all
(x, y) ∈ [0, b] × R. Furthermore, due to the fact |X0,b0

t − X0,b
t | ≤ |b0 − b| for all t ≥ 0 (see

[Kruk et. al. (2008), Theorem 2.1]) and using (5.42) we get:

∣∣∣b0ExD
0,b0
t − bExD

0,b̂
t

∣∣∣ ≤ 2−1|b2 − b20|+ t

∫
|y|<r

y2Π(dy) + t|b0 − b|Ex|X1|

+ 2−1

∣∣∣∣∣∣Ex

 ∑
0<s≤t, |y|≥r

(
φ(X0,b0

s− ,∆Xs, b0)− φ(X0,b
s− ,∆Xs, b)

)∣∣∣∣∣∣ , (5.43)

for all t > 0. Therefore to finish the proof we need to prove

2−1

∣∣∣∣∣∣Ex

 ∑
0<s≤t, |y|≥r

(
φ(X0,b0

s− ,∆Xs, b0)− φ(X0,b
s− ,∆Xs, b)

)∣∣∣∣∣∣
≤ t|b0 − b|

√
6

∫
|y|≥r

|y|Π(dy). (5.44)

For that endeavor, observe that φ is continuously differentiable in its domain and

||∇φ(x, y, b)|| ≤ 2
√
3|y|.

From this inequality and the fact

∥(X0,b0
s− ,∆Xs, b0)− (X0,b

s− ,∆Xs, b)∥ ≤
√
2|b0 − b|,
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we deduce

2−1

∣∣∣∣∣∣Ex

 ∑
0<s≤t, |y|≥r

(
φ(X0,b0

s− ,∆Xs, b0)− φ(X0,b
s− ,∆Xs, b)

)∣∣∣∣∣∣
≤

√
6|b0 − b|Ex

 ∑
0<s≤t, |y|≥r

|∆Xs|

 .

Rewriting the expectation in the right term of the inequality we get

2−1

∣∣∣∣∣∣Ex

 ∑
0<s≤t, |y|≥r

(
φ(X0,b0

s− ,∆Xs, b0)− φ(X0,b
s− ,∆Xs, b)

)∣∣∣∣∣∣
≤

√
6t|b0 − b|

∫
|y|≥r

|y|Π(dy),

proving (5.44) and concluding the proposition.

Lemma 5.5.3. For every b0 > 0

(i) limb→b0 Ex

(∫ ∞

0

e−ϵsdD0,b
s

)
= Ex

(∫ ∞

0

e−ϵsdD0,b0
s

)
,

(ii) limb→b0 limT→∞
1
T
Ex(D

0,b
T ) = limT→∞

1
T
Ex(D

0,b0
T ).

Proof. By integration by parts and using (5.13) we deduce that (i) is equivalent to prove that
the equality

lim
b→b0

Ex

(∫ ∞

0

e−ϵsD0,b
s ds

)
= Ex

(∫ ∞

0

e−ϵsD0,b0
s ds

)
,

holds. Again this is clear from Proposition 5.5.2. The second statement is clearly deduced from
the same proposition.

Lemma 5.5.4. If the process X has unbounded variation then

(i) limb→0Ex

(∫ ∞

0

e−ϵsdD0,b
s

)
= ∞,

(ii) limb→0 limT→∞
1
T
Ex(D

0,b
T ) = ∞.

Proof. In the case where σ ̸= 0 the first item is deduced by integration by parts,
[Andersen et al. (2015), Theorem 6.3] and the fact that D0,b

t increases in t. In that case, the
second item follows from Corollary 6.6 of the same article. We proceed to study the case σ = 0
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and
∫
(0,∞)

yΠ(dy) = ∞. It is clear that for every t > 0, ∆D0,b
t ≥ (∆Xt − b)1∆Xt≥b, so

Ex(D
0,b
T ) ≥ T

∫
y>b

(y − b)Π(dy).

Therefore, the first statement is proven by integration by parts and taking limit b → 0. The
second one by diving by T and then taking limit b → 0 in the inequality. For the case σ = 0

and
∫
(−∞,0)

yΠ(dy) = ∞ we use a symmetrical argument as the previous case to prove

lim
T→∞

1

T
Ex(U

0,b
T ) = ∞, lim

b→0
Ex

(∫ ∞

0

e−ϵsdU0,b
s

)
= ∞.

Then we use the fact that X0,b
T = Xt −Da,b

t +Ua,b
t ∈ [0, b] for all T and conclude the claim.

For the rest of the subsection X has bounded variation.

Proposition 5.5.5. If the process {Xt} has bounded variation and non-positive drift then for
all b > 0

|ExD
0,b
t − ExS

+
t | ≤ t

∫
0<y≤b

yΠ(dy) + btΠ([b,∞)).

Proof. Fix b > 0. On one hand, observe that the process D0,b
t can be rewritten as:

D0,b
t =

∑
0<s≤t

∆D0,b
s .

On the other hand it is clear that if ∆D0,b
s ̸= 0 then ∆Xs > 0. Moreover, if ∆Xs ≥ b then

∆D0,b
s = ∆Xs − b. Thus:

|ExD
0,b
t − ExS

+
t | ≤ Ex

( ∑
0<0s≤t

∆Xs10<∆Xs≤b + b1∆Xs>b

)
= t

∫
0<y≤b

yπ(dy) + btπ([b,∞)).

Lemma 5.5.6. If the process X has bounded variation then

(i) limb→0Ex

(∫ ∞

0

e−ϵsdD0,b
s

)
= Ex

(∫ ∞

0

e−ϵsdS+
s

)
,

(ii) limb→b0 limT→∞
1
T
Ex(D

0,b
T ) = limT→∞

1
T
ExS

+
T .

Proof. In the case that the drift is non-positive, both statements are deduced form Proposition
5.5.5 (in the first one integration by parts must be used). In the case that the drift is positive,
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symmetrical results can be proven for the process U0,b
t and the Lemma is concluded from the

fact X0,b
t ∈ [0, b] for all t > 0.

5.5.3 Proofs of Theorems 5.2.1 and 5.2.2

Finally, we have the necessary ingredients to prove the main results of the article.

Proof of Theorem 5.2.1. If c ∈ C2(R) the result is obtained from Remark 5.5.1 and Lemma
5.5.1, taking an adequate primitive, applied to the verification Theorems 5.3.5 and 5.3.6. Ob-
serve that the restriction in the class of controls of Theorem 5.3.5 is not restriction at all,
because if the process XU,D does not satisfy inequality (5.21), then J(x, U,D) = ∞ due to con-
dition (ii) of Definition 5.2.2 and the fact Gϵ is linear outside an interval (a similar argument
can be found in [Christensen et al. (2023), Theorem 2.10]). Furthermore, we deduce,that Gϵ is
convex due to being a primitive of the value of the ϵ-Dynkin game 5.4.1.
In the case that c /∈ C2(R) notice that there are a couple of constants m0 > 0, l0 > 0 such
that |c′δ(x)| > m0 for every x /∈ [−l0, l0]. Therefore, Proposition 5.4.4 can be used with the
same constant L for every δ, thus every pair (a∗ϵ,δ, b∗ϵ,δ) that defines the Nash Equilibrium for the
ϵ-Dynkin game with associated c′δ belongs to the set [−L,L]. Naturally, taking a subsquence if
necessary, we define (a∗ϵ , b

∗
ϵ) as the limit of (a∗ϵ,δ, b∗ϵ,δ) when δ → 0.

Firstly, assume x ∈ (a∗ϵ , b
∗
ϵ) and for δ small enough we can assume x ∈ (a∗ϵ,δ, b

∗
ϵ,δ). On one hand,

using that we previously proved the Theorem when c ∈ C2(R), we have for every admissible
control (U,D), the inequality:

lim
δ→0

Ex

(∫ ∞

0

e−ϵs
(
cδ(X

a∗ϵ,δ,b
∗
ϵ,δ

s )ds+ qudU
a∗ϵ,δ,b

∗
ϵ,δ

s + qddD
a∗ϵ,δ,b

∗
ϵ,δ

s

))
≤ lim

δ→0
Ex

(∫ ∞

0

e−ϵs
(
cδ(X

U,D
s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
= Ex

(∫ ∞

0

e−ϵs
(
c(XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
. (5.45)

Again, obbserve that the inequality holds for every pair of controls (U,D), not only for the ones
under the hypothesis of 5.3.5. Therefore, we need to prove

lim
δ→0

Ex

(∫ ∞

0

e−ϵs
(
c(X

a∗ϵ,δ,b
∗
ϵ,δ

s )ds+ qudU
a∗ϵ,δ,b

∗
ϵ,δ

s + qddD
a∗ϵ,δ,b

∗
ϵ,δ

s

))
= Ex

(∫ ∞

0

e−ϵs
(
c(Xa∗ϵ ,b

∗
ϵ

s )ds+ qudU
a∗ϵ ,b

∗
ϵ

s + qddD
a∗ϵ ,b

∗
ϵ

s

))
. (5.46)
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The equality

lim
δ→0

Ex

(∫ ∞

0

e−ϵsc(X
a∗ϵ,δ,b

∗
ϵ,δ

s )ds

)
= Ex

(∫ ∞

0

e−ϵsc(Xa∗ϵ ,b
∗
ϵ

s )ds

)

is deduced from the fact that the processes {Xa∗ϵ,δ,b
∗
ϵ,δ

s } and {Xa∗ϵ ,b
∗
ϵ

s } are bounded in [−l, l] and
[Kruk et. al. (2008), Theorem 2.1], which implies that for every A < B,C < D:

|XA,B
t −XC,D

t | ≤ |XA,B
t −XA,D

t |+ |XA,D
t −XC,D

t | ≤ |B −D|+ |C −A|, for all t ≥ 0. (5.47)

It remains to prove that

lim
δ→0

Ex

(∫ ∞

0

e−ϵsdU
a∗ϵ,δ,b

∗
ϵ,δ

s

)
= Ex

(∫ ∞

0

e−ϵsdUa∗ϵ ,b
∗
ϵ

s

)
.

In the case that the process X has bounded variation, the claim is deduced from Lemma
5.5.3 and Lemma 5.5.6. In the case of unbounded variation, again we can use can use Lemma
5.5.3 if d = infδ(b

∗
ϵ,δ − a∗ϵ,δ) is greater than zero. Lets assume, by contradiction d = 0. Using

Lemma 5.5.4 we have a subsequence {δn}n such that

lim
b→0

Ex

(∫ ∞

0

e−ϵsdD
a∗ϵ,δn ,b

∗
ϵ,δn

s

)
= ∞, when n → ∞, for all t > 0. (5.48)

On the other hand, denoting Gδ
ϵ the ϵ discounted value function with a cost function cδ we

observe that for every δ, δ > 0, ||Gδ
ϵ − Gδ

ϵ ||∞ ≤ |δ − δ|. However, due to the assumption
d = 0 and (5.48) for each x ∈ R we have a subsequence {δn}n such that |Gδn

ϵ (x)| → ∞ which
is absurd.
Secondly, if x > b∗ϵ the inequality (5.46) becomes

lim
δ→0

Ex

(∫ ∞

0

e−ϵs
(
cδ(X

a∗ϵ,δ,b
∗
ϵ,δ

s )ds+ qudU
a∗ϵ,δ,b

∗
ϵ,δ

s + qddD
a∗ϵ,δ,b

∗
ϵ,δ

s

)
+ qd(b

∗
ϵ,δ − x)

)
≤ lim

δ→0
Ex

(∫ ∞

0

e−ϵs
(
cδ(X

U,D
s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
= Ex

(∫ ∞

0

e−ϵs
(
c(XU,D

s )ds+ qudUs + qddDs

)
+ quu0 + qdd0

)
,

and we need to prove
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lim
δ→0

Ex

(∫ ∞

0

e−ϵs
(
cδ(X

a∗ϵ,δ,b
∗
ϵ,δ

s )ds+ qudU
a∗ϵ,δ,b

∗
ϵ,δ

s + qddD
a∗ϵ,δ,b

∗
ϵ,δ

s

)
+ qd(b

∗
ϵ,δ − x)

)
= Ex

(∫ ∞

0

e−ϵs
(
c(Xa∗ϵ ,b

∗
ϵ

s )ds+ qudU
a∗ϵ ,b

∗
ϵ

s + qddD
a∗ϵ ,b

∗
ϵ

s

)
+ qd(b

∗
ϵ − x)

)
,

which is equivalent to prove

lim
δ→0

Eb∗ϵ,δ

(∫ ∞

0

e−ϵs
(
cδ(X

a∗ϵ,δ,b
∗
ϵ,δ

s )ds+ qudU
a∗ϵ,δ,b

∗
ϵ,δ

s + qddD
a∗ϵ,δ,b

∗
ϵ,δ

s

))
= Eb∗ϵ

(∫ ∞

0

e−ϵs
(
c(Xa∗ϵ ,b

∗
ϵ

s )ds+ qudU
a∗ϵ ,b

∗
ϵ

s + qddD
a∗ϵ ,b

∗
ϵ

s

))
. (5.49)

The proof of (5.49) follows the same reasoning as the proof of the previous case with the only
precaution that in this case the continuity of c must be used due to the translation of the
process. This is because similar analytical properties of the controlled process and reflections
in the case where the process starts at the lower barrier can be deduced if the process starts at
the upper barrier. The case x < a∗ϵ is clearly analogous.
Finally, for the case x ∈ {a∗ϵ , b∗ϵ}, notice that the function Jϵ(x, U

a∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ) is equal to Gϵ(x)

if x /∈ {a∗ϵ , b∗ϵ}. Therefore, from Proposition 5.3.1 we have
lim supy→x Jϵ(x, U

a∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ) ≤ Gϵ(x) for x ∈ {a∗ϵ , b∗ϵ} and thus, to conclude the proof, we need

to show that
lim
x↘b∗ϵ

Jϵ(x, U
a∗ϵ ,b

∗
ϵ , Da∗ϵ ,b

∗
ϵ ) = Jϵ(b

∗
ϵ , U

a∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ).

This claim is deduced using from the fact if x ≥ b∗ then

Jϵ(x, U
a∗ϵ ,b

∗
ϵ , Da∗ϵ ,b

∗
ϵ ) = qd(x− b∗ϵ) + Jϵ(b

∗
ϵ , U

a∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ).

Proof of Theorem 5.2.2. First, observe that to prove (i) is enough to only to show the pointwise
convergence and (iii). This is because Gϵ is a convex and the third claim implies it is linear
outside an interval. Furthermore let us show that it is sufficient to prove (i) for twice contin-
uously differentiable functions: for every δ > 0, ϵ > 0 denote Gδ

ϵ(x), G
δ(x) the ϵ- discounted

value function and ergodic value function respectively with underlying cost cδ. Observe

|ϵGδ
ϵ(x)− ϵGϵ(x)| ≤ ϵδ, |Gδ(x)−G(x)| ≤ δ, ∀x ∈ R.

Therefore if
lim sup

ϵ
|ϵGδ

ϵ(x)−Gδ(x)| = 0 ∀δ > 0,
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the first item (i) will hold. Thus, to prove (i), we can assume c ∈ C2(R).
Take r > 0 and (U,D) ∈ A such that

J(x, U,D) ≤ G(x) + r.

Using the second hypothesis of the Definition 5.2.2 we deduce there is a constant K > 0 such
that

lim sup
T→∞

1

T
Ex

(∫ T

0

(|XU,D
s |+ |x|)ds

)
< K. (5.50)

On the other hand, for each ϵ > 0, observe Gϵ is in the hypothesis of the verification function
in the theorems 5.3.3 and 5.3.4, thus:

lim inf
T→∞

ϵ

T
Ex

(∫ T

0

Gϵ(X
U,D
s )ds

)
≤ G(x) + r ≤ lim sup

T→∞

ϵ

T
Ex

(∫ T

0

Gϵ(X
a∗ϵ ,b

∗
ϵ

s )ds

)
+ r,

with (a∗ϵ , b
∗
ϵ) the optimal barriers of the ϵ-Dynkin game. We deduce, using the fact r is arbitrary,

it is enough to prove:

lim inf
ϵ→0

(
lim inf
T→∞

ϵ

T
Ex

(∫ T

0

Gϵ(X
U,D
s )ds

)
− ϵGϵ(x)

)
≥ 0, (5.51)

lim sup
ϵ→0

(
lim sup
T→∞

ϵ

T
Ex

(∫ T

0

Gϵ(X
aϵ,bϵ
s )ds

)
− ϵGϵ(x)

)
= 0. (5.52)

The limit (5.52) is clear because Xa,b
s is bounded and the derivate of Gϵ is bounded in [−qu, qd].

To prove that the limit in (5.51) holds we use (5.50) :

lim inf
ϵ→0

(
lim inf
T→∞

Ex

(∫ T

0

(
ϵGϵ(X

U,D
s )− ϵGϵ(x)

T

)
ds

))
≥ lim inf

ϵ→0

(
lim inf
T→∞

Exϵ

(∫ T

0

(
(−qd − qu)

(
|(XU,D

s )|+ |x|
)

T

)
ds

))
≥ lim inf

ϵ→0

(
lim inf
T→∞

ϵ (−qd − qu)K
)
= 0.

We conclude that the pointwise convergence holds because r is arbitrary. The claim (ii)
follows the fact ϵ|Gδ

ϵ(x)−Gδ
ϵ(y)| ≤ (qd + qu)ϵ|x− y| .

To prove (iii) first assume c ∈ C2(R). Naturally, we define, taking a subsequence if necessary,
a∗ and b∗ as the limit when ϵ → 0 of the sequence {a∗ϵ}. Using that the pointwise convergence
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in (i) holds and Theorem 5.3.4, we deduce

lim sup
ϵ→0

J(x, Ua∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ) = G(x).

Thus it is enough to prove

lim
ϵ→0

J(x, Ua∗ϵ ,b
∗
ϵ , Da∗ϵ ,b

∗
ϵ ) = J(x, Ua∗,b∗ , Da∗,b∗). (5.53)

Again, by taking a subsequence if necessary we can assume dϵ : = (b∗ϵ − a∗ϵ) is a monotone
sequence. From equation (5.47) and lemmas 5.5.3, 5.5.4 and 5.5.6 we conclude the claim in a
similar way as the previous Theorem.
To finish the proof for the case that the cost function is not twice continuously differentiable,
we use that the optimal barriers for (a∗δ , b∗δ) are in a compact set and use (5.47) and the results
of the previous subsection.

5.6 Examples

In this section we use the results in [Andersen et al. (2015)] to describe the ergodic cost function
J(x, (U,D)) of Definition 5.2.3 as the solution of a two-sided free boundary control problem
and then provide examples with explicit solutions. The computations of the examples in this
section are possible because the two-barrier problem is solvable for the family of processes
chosen (see Appendix A.3 for compound Poisson processes with and without gaussian part and
[Kyprianou(2006)] for strictly stable processes).

5.6.1 Introduction

In [Andersen et al. (2015), Proposition 5.1], the authors prove for a Lévy process with charac-
teristic triplet (µ, σ2,Π) that if Ps is the distribution of Xa,b

s then ∥Ps(x, ·)−πa,b(·)∥ converges
to zero in the norm of the total variation, where

πa,b[x, b] = P(Xη[x−a−b,x−a)c
≥ x− a) (5.54)

is the stationary measure of the process Xa,b and η[x−a−b,a−a)c denotes the first entry to the set
[x− a− b, a− a)c. Furthermore, in Theorem 1.1 of the same article, when µ = E (X(1)) < ∞,
the following relationship is established:

Eπ(D
a,b
1 ) =

1

b− a

(
2µEπ(X

a,b
1 ) + σ2 +

∫ b−a

0

π0,b−a(dx)

∫ ∞

−∞
φ(x, y, b)Π(dy)

)
,
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with

φ(x, y, b) =


−(x2 + 2xy), if y ≤ −x,

y2, if −x < y < b− x,

2y(b− x)− (b− x)2, if y ≥ b− x.

We know by stationarity, that

lim
T→∞

1

T
Ex(U

a,b
T ) = Eπ(U

a,b
1 ), lim

T→∞

1

T
Ex(D

a,b
T ) = Eπ(D

a,b
1 ),

In consequence, from (5.8), we obtain

Eπ(D
a,b
1 ) = µ+ Eπ(U

a,b
1 )

giving the following result.

Lemma 5.6.1. Under the assumptions given in the introduction, for a < x < b, and d = b−a,
the ergodic cost function of Definition 5.2.3 satisfies

J(x, (Ua,b, Da,b)) =

∫
[a,b]

c(u)πa,b(du) + Eπ(qdD
a,b
1 + quU

a,b
1 )

=

∫
[0,d]

c(u+ a)π0,d(du) + qEπ(D
0,d
1 )− µqu. (5.55)

In (5.55), the lower point a only appears in the integral in the cost, and the second variable
d = b− a is the distance within the barriers. Condition a∗ ≤ 0 ≤ b∗ reads now 0 ≤ −a∗ ≤ d∗.
In what respects the discounted problem, the is reduced to find a couple a∗ ≤ 0 ≤ b∗ that
minimizes

Jϵ(x, a, b) = E

(∫ ∞

0

e−ϵs
(
c(Xa,b

s )ds+ qudU
a,b
s + qddD

a,b
s

))
.

Notice that the process starts at zero because as seen in Section 5.4 the optimal reflecting
controls do not depend on the starting point.

5.6.2 Ergodic problem with absolute value cost for Poisson Com-
pound Process with two-sided exponential jumps

In this example, the cost function is c(x) = |x|. In this case cδ can be taken as

cδ(x) = 2δ log(1 + eδ
−1x)− x− 2δ log 2.

118



We consider a compound Poisson process X = {Xt}t≥0 with double-sided exponential jumps,
given by

Xt = x+

N
(1)
t∑

i=1

Y
(1)
i −

N
(2)
t∑

i=1

Y
(2)
i , (5.56)

where {N (1)
t }t≥0 and {N (2)

t }t≥0 are two Poisson processes with respective positive intensities
λ1, λ2; {Y (1)

i }i≥1 and {Y (2)
i }i≥1 are two sequences of independent exponentially distributed ran-

dom variables with respective positive parameters α1, α2. The four processes are independent.
Consequently

ϕ(z) = λ1
z

α1 − z
− λ2

z

α2 + z
.

For definiteness we assume EX1 = λ1/α1 − λ2/α2 < 0. Consider the Lundberg constant ρ, i.e
the positive root of ϕ(z) = 0, given by

ρ =
λ2α1 − λ1α2

λ1 + λ2

.

Observe that 0 < ρ < α1. To compute (5.55) we obtain the stationary distribution based on
(5.54) and the fact that {exp(ρXt)}t≥0 is a martingale:

π0,d(dx) =
ρ/λ1

α1/λ1 − α2e−ρd/λ2

δ0(dx) +
(α1 + α2)/(λ1 + λ2)

α1/λ1 − α2e−ρd/λ2

ρe−ρxdx

+
ρ/λ2

α1eρd/λ1 − α2/λ2

δd(dx),

where δa(dx) is the Dirac measure at a. We minimize (5.55) resulting from Lemma 5.6.1. First
observe, for a fixed d ≥ 0, that the function

a →
∫
[0,d]

|u+ a|π0,d(du), a ∈ [−d, 0], (5.57)

is convex, differentiable in (−d, 0) with derivate

a →
∫
[0,d]

sign(u+ a)π0,d(du), (5.58)

which is continuous and increasing in (−d, 0). Therefore if the limit of the expression (5.58)
a ↘ −d is non negative then the minimum of the function (5.57) is reached at a = −d. Such
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limit has the value 2π0,d({d})− 1 and is equal or greater than zero if and only if

0 ≤ d, d ≤ ρ−1 log

(
(2ρ+ α2)λ1

α1λ2

)
, (5.59)

which defines an empty set in the case 2π0,0({0})−1 < 0 (a sufficient condition for this inequality
to hold is that α2 ≤ α1 and λ2 ≥ λ1). With a similar analysis we deduce that that the function
(5.57) is minimized at a = 0 iff 1 − 2π0,d({0}) ≤ 0 and that happens if and only if (assuming
log 0 = −∞)

0 ≤ d, d ≤ −ρ−1 log

(
(α1 − 2ρ)+λ2

α2λ1

)
. (5.60)

In the case 2π0,d({d})− 1 ≤ 0 and 1− 2π0,d({0}) ≤ 0 the function (5.57) reaches its minimum
at

a = −ρ−1 log (2(α1 + α2)) + ρ−1 log
(
e−ρd(α2 + λ1α2/λ2) + α1 + λ2α1/λ1

)
(5.61)

On the other hand, from [Andersen et al. (2015), page 70], we get

Eπ(D
0,d
1 ) =

ρλ1

α1

(
e−ρd (1/λ1 + 1/λ2)

α1/λ1 − α2e−ρd/λ2

)
. (5.62)

Thus, after computing
∫
[0,d]

|a+ u|π0,d(du), we deduce that the cost function to be minimized,
that depends on reflecting controls at a < 0 < b, after the change d = b− a, is

J(a, d) =

(
−aρ

λ1

+ e−ρd(d+ a)
ρ

λ2

+
qρλ1

α1

(
e−ρd

(
λ−1
1 + λ−1

2

))
+

(
α1 + α2

λ1 + λ2

)(
e−ρd

(
−a− d− ρ−1

)
− a+ 2ρ−1eaρ − ρ−1

))

×
(
α1

λ1

− α2e
−ρd

λ2

)−1

.

Upon inspection, we conclude that the candidates for the optimal barriers are a = 0, d = 0

or d minimizing the expression above with a equal to 0,−d or the value in (5.61). To illustrate
we put numeric examples to show that the four possible cases can happen:

If λ1 = 1, λ2 = 2, α1 = 2, α2 = 1, q = 3, then a∗ = 0, d∗ ∼ 4.005.

If λ1 = 1, λ2 = 2, α1 = 2, α2 = 1, q = 0.1, then a∗ = 0, d∗ = 0.

If λ1 = 1, λ2 = 1, α1 = 4, α2 = 1, q = 5, then a∗ ∼ −0.272, d∗ ∼ 0.966.
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The last case, giving a∗ = −d∗ ̸= 0 is very sensitive to the parameter variations

If λ1 = 9.999985× 105, λ2 = 1, α1 = 1× 106, α2 = 5× 10−7,

q = 0.5, then − a∗ = d∗ ∼ 0.0202.

In certain sense, the case where the optimum is reached at zero and a negative barrier can be
seen as pathological because the expected value is negative yet it is optimal to keep the process
in the negative line.
It should be noted, due to the nature of this process and the cost value, that without loss of
generality on the parameters and also the Lundberg constant can be taken as one.

5.6.3 Discounted problem with quadratic cost for a Compound Pois-
son process with two-sided exponential jumps and Gaussian

Noise

In this case, ϵ > 0 is fixed, c(x) = x2/2. We assume that the Lévy process process {Xt}t≥0 has
non-zero mean defined by

Xt = x+ σWt +

N
(1)
t∑

i=1

Y
(1)
i −

N
(2)
t∑

i=1

Y
(2)
i , (5.63)

with {Wt}t≥0 a Brownian motion, σ > 0, and {N (1)
t }t≥0,{N (2)

t }t≥0,{Y (1)
i }i≥1, {Y (2)

i }i≥1 as in the
previous example, the five processes are independent (for more information about the first exit
time of an interval for this process see [Cai et al. (2009)]). Therefore

ϕ(z) =
σ2

2
z2 + λ1

z

α1 − z
− λ2

z

α2 + z
.

Now we find a pair a∗ ≤ b∗ such that

Gϵ(x) = Jϵ(x, (U
a∗,b∗ , Da∗,b∗)).

Taking τ(a), σ(b) as in (5.11)

Mx(a, b) = Ex

(∫ τ(a)∧σ(b)

0

e−ϵsXsds− que
−ϵτ(a)1{τ(a)<σ(b)} + qde

−ϵσ(b)1{σ(b)<τ(a)}

)
,

and applying Theorem 5.2.1, to solve the discounted control problem, we need to find a∗ < 0 <
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b∗ such that
M(a∗, b∗) = sup

a<0
inf
b>0

M(a, b), (5.64)

where we assume X0 = 0 because (a∗, b∗) do not depend on the starting point. Using
[Cai et al. (2009), Theorem 3.1], we deduce:

M(a, b) =

(e−ρ3b, e−ρ4b, e−ρ1a, e−ρ2a)N−1
b−a


−ϵ−2(λ1/α1 − λ2/α2)− ϵ−1b+ qd

−α−1
1 (ϵ−2(λ1/α1 − λ2/α2) + ϵ−1α−1

1 + ϵ−1b− qd)

−ϵ−2(λ1/α1 − λ2/α2)− ϵ−1a− qu

−α−1
2 (ϵ−2(λ1/α1 − λ2/α2)− ϵ−1α−1

2 + ϵ−1a+ qu)


+

λ1/α1 − λ2/α2

ϵ2
.

With

Nb−a =


1 1 e−ρ1(a−b) e−ρ2(a−b)

1
α1 − ρ3

1
α1 − ρ4

e−ρ1(a−b)

α1 − ρ1
e−ρ2(a−b)

α1 − ρ2
eρ3(a−b) eρ4(a−b) 1 1

eρ3(a−b)

α2 + ρ3
eρ4(a−b)

α2 + ρ4
1

α2 + ρ1
1

α2 + ρ2


where ρi (i = 1, 2, 3, 4) are the non-zero roots of the function z → ϕ(z) − ϵ that satisfy

ρ2 < −α2 < ρ1 < 0 < ρ3 < α1 < ρ4. . This matrix is always non-singular (see [Cai et al. (2009),
Proposition 3.1]).
For the parameters:

qd = 1, qu = 1, α1 = 2, α2 = 1, λ2 = 1, λ1 = 1, ϵ = 1, σ =
√
2,

the solutions of the equation ϕ(z)− ϵ = 0 are:

ρ1 ∼ −0.489, ρ2 ∼ −1.898, ρ3 ∼ 0.849, ρ4 ∼ 2.537,

and the equilibrium point is a∗ ∼ −2.017, b∗ ∼ 2.311.

5.6.4 Ergodic problem with quadratic cost for strictly stable pro-

cesses

In this example c(x) = x2, and the Lévy process X is strictly α−stable with parameter α ∈
(1, 2), 0 < c+ < c−. In other words X is a pure jump process with finite mean and triplet
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(0, 0,Π), with jump measure

Π(dx) =

c+x−α−1dx, x > 0,

c−|x|−α−1dx, x < 0.

The characteristic exponent is

ϕ(iθ) : = |θ|α(c+ + c−)
(
1− isgn(θ) tan

(πα
2

)c+ − c−

c+ + c−

)
.

(see [Kyprianou(2006), page 10]). The two-sided exit problem can be solved using the scaling
property, that is Xt

d
= k

−1
α Xtk for every t > 0, k > 0 (see [Kyprianou(2006)]). The stationary

measure has Beta density π0,d(x) on [0, d] with parameters (αρ, α(1− ρ)), i.e.

π0,d(x) =
1

dβ(αρ, α(1− ρ))

(
1− x

d

)αρ−1 (x
d

)α(1−ρ)−1

,

where

β(u, v) =

∫ 1

0

tu−1(1− t)v−1 dt,

is the Beta function and

ρ =
1

2
+ (πα)−1 arctan

((c+ − c−

c+ + c−

)
tan(απ/2)

)
.

From this ∫ d

0

xπ0,d(x) dx = dρ,

∫ d

0

(x− dρ)2π0,d(x) dx = d2
ρ(1− ρ)

α + 1
, (5.65)

and Eπ(D
0,d
1 ) that can be expressed explicitly (see [Andersen et al. (2015), page 114]):

Eπ(D
0,d
1 ) =

c−β(2− αρ, αρ) + c+β(2− α(1− ρ), α(1− ρ))

β(αρ, α(1− ρ))α(α− 1)(2− α)

1

dα−1
= Eπ(D

0,1
1 )

1

dα−1
. (5.66)

We solve explicitly the ergodic problem and prove that the optimal barriers (a∗, b∗) are unique.
First notice that we can discard the problematic cases of trivial barriers because E(X∞) = ∞
and E(D0,d

1 ) → ∞ when d → 0.
Observe now that for each fixed d > 0 the optimal lower barrier a satisfies

a = −
∫ d

0

xπ0,d(x)dx = −dρ.
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therefore the ergodic problem has an objective function depending only on d, given by

J(d) =

∫ d

0

(x− dρ)2πd(x) dx+ qE(D0,d
1 )

= d2
ρ(1− ρ)

α + 1
+

1

dα−1
qE(D0,1

1 ). (5.67)

By differentiation:

d∗ =

(
(α2 − 1)qE(D0,1

1 )

2ρ(1− ρ)

)1/(α+1)

.

For example when q = 1, c− = 2, c+ = 1, α = 1.5 the ergodic value is reached at d∗ ∼ 2.850

and a∗ = −1.230.
We present an illustrative graphic where
c− = 2, c+ = 1, the domain is (α, q) ∈ (1, 2) × (0, 10) and the output is the optimal d∗:
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Chapter 6

Stationary mean field games for
two-sided Control Lévy problems

Abstract
In this chapter, we study a probabilistic mean field game driven by a Lévy process. The formulation

is similar to Chapter 4 in the sense that we consider the problems posed in the previous chapter (in this
case Chapter 5) with an added pool of players. With the Brouwer fixed point theorem, we provide easy
to check conditions for the existence of mean field game equilibrium controls for both the discounted
and ergodic control problem and characterize them as the solution of an integro-differential equation.
Furthermore, we study the convergence of equilibrium controls in the abelian sense. Finally, we treat
the convergence of a finite-player game to this problem to justify our approach (the arguments are
exactly the same as Chapter 4).

We incorporate a mean field game dependence into the two-sided discounted and ergodic
singular control problems for Lévy processes mentioned in Chapter 5. For both problems we
obtain sufficient conditions for the existence of mean field game equilibrium points, and conver-
gence of equilibrium points in the abelian sense. Finally, for a subset of the admissible controls
we define an N -player problem and prove that a mean-field equilibrium is an approximate Nash
equilibrium for the N -player game.

The chapter is organized as follows. In Section 6.2 we define the framework and provide the
main results of this chapter. In Section 6.3 we use the adjoint Dynkin game to prove that there
is a MFG equilibrium for the ϵ-discounted control problem, for that endeavor we use Brouwer
fixed point Theorem. In Section 6.4 we use regenerative theory to prove that the equilibrium
points in the discounted case have a convergent subsequence to a MFG equilibrium for the
ergodic problem. In Section 6.5 we provide examples. Finally in Section 6.6 we study the
convergence of the N -player game to the MFG for both problems.
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6.1 Introduction

The mean field game framework when the underlying process is Lévy with related problems as
the ones studied in this thesis is scarce. Nevertheless we give some historical references:

• [Fu and Ulrich (2017)] Already mentioned in Chapter 4. The underlying process is an
Itô-jump-diffusion.

• [Bensoussan et. al. (2020)] The problem posed here is structurally different from ours,
because of this, we omit most of the details in this brief summary. The authors work
with a finite-horizon MFG control problem with an integral running and a final cost.
The underlying process is the strong solution of a SDE with drift, jump diffusion and
regime switching (between finite states). There is a finite number of decision makers
i = 1, . . . n. Each one has a finite set of controls Ai. The process is controlled by the
vector of controls a = (a1, . . . , an). That is, it affects the drift, volatility, jumprate and
the switching process. Each decision maker i has a payoff of the form:

Ri,T (s0, a, so) = gi(s(T ),m(T, ·), sT ) +
∫ T

0

ri(s(t),m(t, ·), a(t), s(t)).

Here, s is the controlled process, s0 is the departing point, s0 is the departing state, m is
a probability density depending on the controlled process s (here is where the interaction
with infinite players lies). The functions g, ri are the terminal and integral running cost
respectively. The best response is of the form:

Vi(0, s0, s0) =


supai∈Ai

E (Ri,T (s0, ai, s0))

s(t) the a(t) controlled process starting at s0 with departing state s0.

s(0) = s0.

m(t, ·) = Ps(t).

(6.1)
A MFG equilibrium is a vector of controls a such that, for every i the supremum in
the first line of (6.1) is reached at ai. It is interesting to observe that in this case, using
naively a HBJ equation would give an infinite-dimensional problem (due to m(t, ·)). Thus
the approach that propose the authors is to use a dual adjoint problem (which is not a
Dynkin game, nor an optimal stopping problem). They give sufficient conditions for the
existence of a MFG equlibrium and techniques to obtain optimal solutions in the form of
a SDE (which its parameters are not explicit in most cases).

• [Benazzoli et al. (2020)] Again, this problem is structurally different from ours as the
controls are not singular and the horizon is finite. The authors work with a family of
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MFGs with controlled jumps. The controlled process Xγ is of the form:

dXγ
t = b(t,Xγ

t , µt, γt)dt+ σ(t,Xγ
t , µt, γt)dWt + β(t,Xγ

t , µt, γt)dN t, t ∈ [0, T ],

where µ is a probability measure on the Skorokhod space D([0, T ],Rd) (here lies the mean
field interaction) of right-continuous with left limit functions, γt represents a control
process with values in a fixed action space A, W is a standard multivariate Brownian
motion and N is a compensated Poisson process with some time-dependent intensity
λ(t). Moreover, the authors assume that W and N t are independent. There is an integral
running cost and a terminal cost. The authors give necessary assumptions to guarantee
the existence of a relaxed mean field game equilibrium. For that endeavor, they equip the
set of relaxed controls with the Wasserstein metric (see [Carmona and Delarue (2018),
Chapter V]) and use a fixed point Theorem. They also provide an example with the
explicit solution for the N -player game and show the convergence to the MFG problem.

• [Sohr, T. (2020), Chapter VI, Section 4], the author studies a MFG for an ergodic one-
sided impulse control problem with one fixed restarting point y0 when the underlying
process is Lévy with positive mean. The controls are of the form S = (τn, y0), where
{τn}n∈N is a sequence of increasing stopping times. Here the controlled process XS,
informally speaking, is left uncontrolled in the interval [τnτn+1), that is XS

t = XS
τn +Xt−

Xτn for all t ∈ [τnτn+1) and in t = τn is pushed to y0. The controlled process just before
the control τn is denoted XS

τ−n
and is of the form:

XS
τ−n

= lim
t↑τn

XS
t +△Xτn .

Moreover, the controls are restricted to the ones such that XS converge in distribution
to a stationary distribution. The control problem is of the form:

Jx(R,Q) := lim inf
1

T
Ex

(∑
τn≤T

(φ(XS
τ−n
)− φ(y0))ρ(Ex(X

R
∞))−K

)
, K > 0.

The roadmap is the following:

– First the authors prove in Chapter IV of this thesis, with an adjoint optimal stopping
problem, that the optimal strategies (the best response map when R is fixed) are in
the set:

{S = ({τxn}, y0), τ0 := infXt ≤ x, τn = inf
t
XS

t ≤ x, τn > τn+1, x > y0}
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– This allows to characterize the strategies (R,Q) with only two parameters (r, q).

– The best response then is a function of one variable.

– The author prove, with the adjoint optimal stopping problem that this map is under
the hypothesis of Brouwer fixed point theorem.

Although our framework is structurally different, we follow a similar roadmap.

6.2 Framework and main results

6.2.1 Setting

The probability space with its associated underlying process is the same as Chapter 5 (we
assume X is not a subordinator, nor the opposite of a subordinator). Moreover, the set of
admissible controls A is also the same. Similar to Section 4.3, in this section, there is a
continuous map f and now the function c depends on two variables. Contrary to Chapter 4,
we prove that in general there is a MFG equilibrium.

Definition 6.2.1. We denote P∞ the set of random variables Xη
∞ with compact support, such

that there exists η = (U,D) ∈ A so that for every t ≥ 0:

lim
t→∞

XU,D
t = Xη

∞, in distribution.

For simplicity we denote pη := E (f(Xη
∞)) . Moreover when there is no need to highlight the

importance of η we simply denote pη as p.

Remark 6.2.1. Let a < b, x ∈ R, then the probability flux Px(X
a,b
t ∈ dx) converges in total

variation to a stationary distribution in P∞ (see [Andersen et al. (2015), Section V]).

We define, when a < b the value pa,b := p(U
a,b,Da,b) and in the degenerate case a = b we

define pa,a := f(a).

Proposition 6.2.1. For every a ∈ R, the constant random variable X = a belongs to P∞.

Proof. The main idea is to take an smaller and smaller reflection at each time interval. It is
clear that it is enough to prove the proposition for a = 0 and that we can assume x = 0. For
t ∈ [0, 1], let

Y n
t := Xt+n −Xn.
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Observe that {Y n
t }n≥0 is a sequence of independent Lévy processes starting at zero that satisfy

for every n, Yn is independent of σ(Xu : u ≤ n). Moreover Xt can be rewritten as:

Xt =

[t]∑
n=0

Y n
(t−n)∧1.

We proceed to reflect each process Y n in [−1/n, 0] in the following way:

Un
t , D

n
t the reflections at [−1/n, 0] of Y n

t , t ∈ [0, 1], n ≥ 0

d0 = 0, dn = (Y n−1
n + Un−1

n −Dn−1
n )+, n ≥ 1,

u0 = 0, un = −(Y n−1
n + Un−1

n −Dn−1
n )−, n ≥ 1,

Define the admissible controls Ut, Dt as:

Ut :=

[t]∑
n=0

(
Un
(t−n)∧1 + un

)
, Dt :=

[t]∑
n=0

(
Dn

(t−n)∧1 + dn
)
.

It is clear (Ut, Dt) is an increasing and adapted process and it is satisfied (except in the set that
Xt has a jump in a natural number) that Xt +Ut −Dt ∈ [−1/n, 0] for t ≥ n. Then we deduce,
limt→∞ Xt + Ut −Dt = 0 a.s, thus concluding the proof.

We define the running cost, now depending on Xη
∞ ∈ P∞ too, in a way that for every fixed

η the map c(·,Ef (Xη
∞)) is a running cost as in Definition 5.2.2.

Assumption 6.2.2. We assume that the function c : R2 → R+ is continuous, non-negative and

(i) for every y ∈ R, the function c(·, y) is strictly convex, has a global minimum in the first
variable which is reached at zero and for every r > 0

inf
(x,y)∈(−r,r)c×R

cxx(x, y) > 0.

(ii) For each fixed y ∈ R, there is a pair of positive constants N (independent of y) and My

that satisfy
c(x, y) +My ≥ N |x|, ∀x ∈ R.

(iii) For every (x, y) ∈ R2

Ex

(∫ ∞

0

cx(Xs, y)e
−ϵsds

)
< ∞, ∀x ∈ R.
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Definition 6.2.2. Given x ∈ R, Xη
∞ ∈ P∞ and a control (Û , D̂) ∈ A, we define the ergodic

cost function

J(x, (Û , D̂), Xη
∞) = lim sup

T→∞

1

T
Ex

(∫ T

0

c(X Û ,D̂
s , pη)ds+ quÛT + qdD̂T

)
,

and the ergodic value function

G(x,Xη
∞) = inf

(Û ,D̂)∈A
J(x, (Û , D̂), Xη

∞).

Definition 6.2.3. Given x ∈ R, Xη
∞ ∈ P∞, a control (Û , D̂) ∈ A and a fixed positive constant

ϵ, we define the ϵ-discounted cost function

Jϵ(x, (Û , D̂), Xη
∞) = Ex

(∫ ∞

0

e−ϵs(c(X Û ,D̂
s , pη)ds+ qudÛs + qddD̂s

)
+ û0qu + d̂0qd,

and the ϵ-discounted value function

Gϵ(x,X
η
∞) = inf

(Û ,D̂)∈A
Jϵ(x, (Û , D̂), Xη

∞).

Definition 6.2.4. We say that a pair of points (a, b) with a ≤ b (the inequality strict if X has
unbounded variation) is :

(i) an ϵ-discounted equilibrium if Gϵ(x,X
a,b
∞ ) = Jϵ(x, U

a,b, Da,b, Xa,b
∞ ) for all x ∈ R,

(ii) an ergodic equilibrium if G(x,Xa,b
∞ ) = J(x, Ua,b, Da,b, Xa,b

∞ ) for all x ∈ R.

6.2.2 Main results

The most important results of the chapter are the existence of an equilibrium the discounted
problem and the existence of a sequence of ϵ-discounted equilibrium points converging to an
ergodic equilibrium point. These results are redacted in the following two Theorems which are
proven in the sections 6.3 and 6.4. For a, b ∈ R, let us recall the definitions of τ(a) and σ(b)

given in (5.11):

τ(a) = inf{t ≥ 0: Xt ≤ a}, σ(b) = inf{t ≥ 0: Xt ≥ b}.

Theorem 6.2.3. Under the hypotheses posed in this chapter:

(i) for all Xη
∞ ∈ P∞, Gϵ(·, Xη

∞) is in the domain in the infinitesimal generator,
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(ii) a pair (a, b) is an ϵ-discounted equilibrium if u(x) := Gϵ(x,X
a,b
∞ ) satisfies

Lu(x)− ϵu(x) + c(x, pa,b) ≤ 0, for all x ≤ a,

Lu(x)− ϵu(x) + c(x, pa,b) ≥ 0, for all x ≥ b,

Lu(x)− ϵu(x) + c(x, pa,b) = 0, for all x ∈ (a, b),

u(x) = u(x) + (a− x)qu, for all x ≤ a,

u(x) = u(x) + (x− b)qd, for all x ≥ b. (6.2)

(iii) There is an ϵ-discounted equilibrium (a∗ϵ , b
∗
ϵ), with a∗ϵ < 0 < b∗ϵ , that satisfies ii) and

V (x,Xa∗ϵ ,b
∗
ϵ

∞ ) = sup
a≤0

inf
b≥0

Ex

(∫ τ(a)∧σ(b)

0

cx(Xs, p
a∗ϵ ,b

∗
ϵ )e−ϵsds+ qde

−ϵτ(a)1τ(a)≤σ(b) − que
−ϵσ(b)1σ(b)<τ(a)

)

=Ex

(∫ τ(a∗ϵ )∧σ(b∗ϵ )

0

cx(Xs, p
a∗ϵ ,b

∗
ϵ )e−ϵsds+ qde

−ϵτ(a∗ϵ )1τ(a∗ϵ )≤σ(b∗ϵ ) − que
−ϵσ(b∗ϵ )1σ(b∗ϵ )<τ(a∗ϵ )

)
.

Furthermore a∗ϵ , b
∗
ϵ satisfy:

a∗ϵ = sup{x, V (x,Xa∗ϵ ,b
∗
ϵ

∞ ) = −qu}, b∗ϵ = inf{x, V (x,Xa∗ϵ ,b
∗
ϵ

∞ ) = qd}.

Remark 6.2.2. The statement (i) is obtained from Theorem 5.2.1, Proposition 5.4.5 and Propo-
sition 5.4.6. In fact it could have been omitted but we considered it to be informative.

Theorem 6.2.4. There is an ergodic equilibrium (a∗, b∗), with a∗ ≤ 0 ≤ b∗, that satisfies:

(i) There is a sequence {(a∗ϵn , b
∗
ϵn , ϵn)}n≥0 converging to (a∗, b∗, 0) when n → ∞, such that

(a∗ϵn , b
∗
ϵn) is an ϵn-discounted equilibrium and

(ii) for every x ∈ R
lim
n→∞

ϵnGϵn(x,X
a∗ϵn ,b

∗
ϵn∞ ) = G(x,Xa,b∗

∞ ).

6.3 Mean field equilibrium of the ϵ-discounted problem

Due to the fact that for every y ∈ R, the map x → c(x, y) is twice countinuously differentiable
and with positive bounded below second derivate outside intervals containing zero in the first
coordinate, useful properties of the associated Dynkin game are deduced in the first part of
this section. Then, in the second part, we use these properties to show that there is an MFG
equilibrium with the Brouwer fixed point Theorem.
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6.3.1 The adjoint Dynkin game

It is clear that for a fixed y ∈ R, the results of 5.4 can be applied when the cost function is
the map x → c(x, y) (in this case, as c(·, y) ∈ C2(R), there is no need to define the functions
cδ). We borrow the notations from that section with the difference that we add the suffix p in
every definition to highlight the dependence of p = E (f(Xη

∞)). To be more specific, as these
are the only elements of the Dynkin game that will be mentioned in this section, instead of
Mx defined in the subsection 5.4.1, we write Mx,p, instead of Vϵ defined in the subsection 5.4.2,
we write Vϵ,p and instead of (a∗ϵ , b∗ϵ) defined in Proposition 5.4.3, we write (a∗ϵ,p, b

∗
ϵ,p). Observe

however, that Q does not depends on p. Let us recall that in Proposition 5.4.4 we proved that
there was an interval [−L,L] such that (a∗ϵ , b∗ϵ) ∈ [−L,L] for every ϵ ≤ ϵ. If we were to use this
proposition we should highlight the dependence of L with respect to p. However we can refine
the proposition so that the bound L does not depends on p. For the reader’s convenience, lets
recall the definition of γℓ for ℓ > 0 (see Definition 5.36) :

γℓ = inf

{
t ≥ 0: |Xt − ℓ| ≥ ℓ

2

}
.

Proposition 6.3.1. For ϵ small enough there is a constant L such that the optimal thresholds
of the ϵ-Dynkin game (a∗ϵ,p, b

∗
ϵ,p) ⊂ [−L,L] for every ϵ ≤ ϵ and every Xη

∞ ∈ P∞.

Proof. From Assumptions 6.2.2, for ℓ > 2 satisfying

ℓ

(
inf

(x,y)∈(−1,1)c×R
cxx(x, y)

)
> N,

we have, for all x ≥ ℓ/2, cx(x, p) =
∫ x

0
cxx(u, p)du > N/2. Then for all ϵ > 0:

Eℓ

(∫ γℓ

0

cx(Xs, p)e
−ϵsds

)
≥ N

2
Eℓ

(
1− e−ϵγℓ

ϵ

)
. (6.3)

On the other hand, as

Eℓ(γ
ℓ) = E

(
inf

{
t ≥ 0: |Xt| ≥

ℓ

2

})
→ ∞ as ℓ → ∞,

we find an ℓ s.t.
Eℓ(γ

ℓ) >
2

N
(qu + qd). (6.4)

For a fixed ℓ satisfying (6.4), using dominated convergence and the fact Eℓ(γ
ℓ) < ∞ when X
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is not the null process, we have that

Eℓ

(
1− e−ϵγℓ

ϵ

)
↗ Eℓ(γ

ℓ) as ϵ → 0.

Thus, using (6.4) we can take ϵ small enough such that for every ϵ ≤ ϵ and every p ∈ P∞ we
have

Eℓ

(∫ γℓ

0

cx(Xs, p)e
−ϵsds

)
≥ qd + qu. (6.5)

We now take L := 3ℓ/2 and prove that for every p ∈ P∞, ϵ ≤ ϵ, b∗ϵ,p ≤ L. Assume, by
contradiction, that b∗ϵ,p > L, what implies qd > Vp(ℓ). Now we have

qd > Vp(ℓ) = Eℓ

(∫ γℓ

0

cx(Xs, p)e
−ϵsds+ e−ϵγℓVp(Xγℓ)

)
≥ Eℓ

(∫ γℓ

0

cx(Xs, p)e
−ϵsds

)
− qu ≥ qd.

by (6.5), what is a contradiction. The other bound is analogous, thus we obtain an ℓ > 0 such
that for every ϵ ≤ ϵ we have a∗ϵ, > −3ℓ/2. By taking L = (3/2)max(ℓ, ℓ), we conclude the
proof.

Let us recall that from Proposition 5.4.5, we have that Vp is Lipschitz. With that result in
mind, we proceed to prove that the ϵ-Nash equilibrium is unique.

Lemma 6.3.2. If there is a couple (A,B) such that the (τA, σB) defined as

τ(A) = inf{t ≥ 0: Xt ≤ A}, σ(B) = inf{t ≥ 0: Xt ≥ B}

is a Nash Equilibrium then

lim inf
h→0+

Vp(x+ h)− Vp(x)

h
≥ lim

h→0+
E

∫ τ(A)x∧σ(B)x+h

0

cxx(x+Xs, p)e
−ϵsds. (6.6)

Proof. Take x ∈ R and h > 0. We obtain the bound

Vp(x+ h) ≥ Ex+h

(∫ τ(A)−h∧σ(B)

0

cx(Xs, p)e
−ϵs ds+Q(τ(A)−h, σ(B))

)

= E

(∫ τ(A)x∧σ(B)x+h

0

cx(x+ h+Xs, p)e
−ϵsds+Q(τ(A)x, σ(B)x+h)

)
.
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Similarly

Vp(x) ≤ Ex

(∫ τ(A)∧σ(B)h

0

cx(Xs, p)e
−ϵs ds+Q(τ(A), σ(B)h)

)

= E

(∫ τ(A)x∧σ(B)x+h

0

cx(x+Xs, p)e
−ϵs ds+Q(τ(A)x, σ(B)x+h)

)
.

Subtracting, and applying the mean value theorem, we get

Vp(x+ h)− Vp(x)

h
≥ E

(∫ τ(A)x∧σ(B)x+h

0

cxx(x+Xs + θh, p)e−ϵs ds

)
,

where 0 ≤ θ ≤ 1. We conclude that the inequality (6.6) holds by taking lim infh→0 and observing
that the limits

lim
h→0

E

(∫ τ(A)x∧σ(B)x+h

0

cxx(x+Xs + θh, p)e−ϵs ds

)
,

lim
h→0

E

(∫ τ(A)x∧σ(B)x+h

0

cxx(x+Xs, p)e
−ϵs ds

)
,

exist and are equal due to cxx being continuous and σ(B)x+h being monotone in h.

From the previous lemma we deduce that if there was a couple (A,B) ̸= (a∗p,ϵ, b
∗
p,ϵ) that was

also a Nash equilibrium, we would have different representation for Vp such that the stopping
region is different. Thus there would be a point x in one stopping region and in other continu-
ation region. This implies V ′

p(x) > 0 according to one representation and V ′
p(x) = 0 according

to the other representation (recall V ′
p is Lipschitz thus almost everywhere differentiable). We

write this result in the next corollary:

Corollary 6.3.3. The only couple of points (A,B) such that τ(A), σ(B) defined as in the
previous Lemma is a Nash Equilibrium is (a∗p,ϵ, b

∗
p,ϵ).

6.3.2 Fixed point

To prove that there is an equlibrium in the discounted case, as usual in the literature, we use
a fixed point theorem. To be more specific, we use Brouwer’s Fixed Point-Theorem (every
continuous function from a compact convex subset of a Euclidean space to itself has a fixed
point, see [Park and Sehie (1999), Section 6]). We need some properties before defining the
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adequate function. In this subsection L is defined as in Proposition 6.3.1. In the following
proposition we use implicitly Corollary A.2.4.

Proposition 6.3.4. For every r, ϵ > 0, Xµ1
∞ , Xµ2

∞ ∈ P∞, if

sup
x∈[−L,L]

|c′(x, pµ1)− c′(x, pµ2)| ≤ r,

then
||Vpµ1 − Vpµ2 ||∞ ≤ r sup

x∈[−L,L]

Ex(τ−L ∧ σL),

with Vpµ1 , Vpµ2 the (ϵ, pµ1), (ϵ, pµ2) value functions respectively.

Proof. Fix x ∈ R. Observe Vpµ1 (x) = Vpµ2 (x) if x /∈ (−L,L). Therefore we can assume x ∈
(−L,L). Assume Vpµ1 (x) ≤ Vpµ2 (x). On one hand, using the fact for i, j ∈ {1, 2}, τ ∗apµi ,ϵ∧σ∗

b
p
µj ,ϵ

is a stopping time smaller or equal than the first exit of the interval [−L,L]:

|Mx,pµ1 (τ
∗
apµi ,ϵ

, σ∗
b
p
µj ,ϵ

)−Mx,pµ2 (τ
∗
apµi ,ϵ

, σ∗
b
p
µj ,ϵ

)|

=

∣∣∣∣Ex

(∫ τ∗a
pµi ,ϵ

∧σ∗
b
p
µj ,ϵ

0

(c′(Xs, p
µ1)− c′(Xs, p

µ2))e−ϵsds

)∣∣∣∣ ≤ r sup
x∈[−L,L]

Ex(τ−L ∧ σL). (6.7)

Therefore,

Vpµ2 (x)− r sup
x∈[−L,L]

Ex(τ−L ∧ σL)

= Mx,pµ2 (τ
∗
apµ2 ,ϵ

, σ∗
bpµ2 ,ϵ

)− r sup
x∈[−L,L]

Ex(τ−L ∧ σL)

≤ Mx,pµ2 (τ
∗
apµ2 ,ϵ

, σ∗
bpµ1 ,ϵ

)− r sup
x∈[−L,L]

Ex(τ−L ∧ σL)

≤ Mx,pµ1 (τ
∗
apµ2 ,ϵ

, σ∗
bpµ1 ,ϵ

) ≤ Mx,pµ1 (τ
∗
apµ1 ,ϵ

, σ∗
bpµ1 ,ϵ

) = Vpµ1 (x).

Lemma 6.3.5. If {(an, bn)}n is a sequence that converges to (a, b), with a ≤ 0 ≤ b, then
pan,bn → pa,b when n → ∞.

Proof. First we assume a ̸= b. We can assume that an ̸= bn for every n (it is true for n big
enough). Then observe, due to (5.47) and the continuity of f :

lim
n→∞

E
(
f(Xan,bn

∞ )− f(Xa,b
∞ )
)
= lim

n→∞
lim
T→∞

1

T

∫ T

0

E
(
f(Xan,bn

s )− f(Xa,b
s )
)
ds = 0

135



For the case a = 0 = b, simply observe that the measures Xan,bn
∞ have support on the interval

[an, bn] and an ≤ 0 ≤ bn.

We need a technical result that will allow us to control the increment of the function Vp

Proposition 6.3.6. Let us consider the quaternion b1 < b2 < b3 < b4 then

inf
x∈[b2,b3]

Ex(τb1 ∧ σb4) > 0.

Proof. Assume by contradiction that there is a sequence {xn} ⊂ [b2, b3] converging to x such
that

lim
n→∞

Exn(τb1 ∧ σb4) = 0.

We can assume (taking a subsequence if necessary) that the expected value decreases to zero.
Therefore, we deduce τb1−xn∧σb4−xn decreases to zero P-almost surely. This implies τb1−x∧σb4−x

is equal to zero P almost surely which is a contradiction because it is the fist exit from an open
interval containing zero.

We have enough properties to work with the map that gives the best response.

Definition 6.3.1. For a fixed ϵ > 0, define the function F : [−L, 0]× [0, L] → [−L, 0]× [0, L]

as: F (a, b) = (a∗
pa,b,ϵ

, b∗
pa,b,ϵ

). Moreover we denote F1(a, b) and F2(a, b) as the projections of F
in the first and second coordinate respectively.

Lemma 6.3.7. The function F is continuous.

Proof. We will only prove F1 is continuous (the proof of the continuity of F2 is analogue).
For (a, b) ∈ [−L, 0] × [0, L], take x ∈ (a∗

pa,b,ϵ
, b∗

pa,b,ϵ
). Observe Vpa,b(x) < qd. Take a sequence

{(an, bn)}n≥0 ⊂ [−L, 0] × [0, L] converging to (a, b). Observe, due to Lemma 6.3.5 and Propo-
sition 6.3.4 we have

lim sup
n→∞

Vpan,bn (x) < qd.

Therefore lim supn→∞ F1(an, bn) ≥ lim infn→∞ F1(an, bn) ≥ b∗
pa,b,ϵ

. Let us assume by contradic-
tion that lim supn→∞ F1(an, bn) = b̂ > b∗

pa,b,ϵ
. Set b1 < b2 such that (b1, b2) ⊂ (b∗pa,b,ϵ, b̂). Observe,

using Lemma 6.3.2 that for N big enough (using the fact cxx(x, y) > 0 whenever x ̸= 0):

lim inf
h→0+

Vpan,bn (x+ h)− Vpan,bn (x)

h

≥ lim inf
h→0+

E

∫ τ
b∗pa,b,ϵ
x ∧σb̂

x+h

0

(
inf

(h,y)∈(−b∗pa,b,ϵ
,b∗pa,b,ϵ

)c×R
cxx(h, y)

)
e−ϵs ds.

136



for every x ∈ (b1.b2). Due to the fact

lim inf
h→0+

σb1
x+h ≥ σb1

x , inf
x∈(b1,b2)

E(τ bx ∧ σb̂
x) > 0,

we deduce that there is a δ > 0 that for every x ∈ (b1, b2) and n big enough

lim inf
h→0+

Vpan,bn (x+ h)− Vpan,bn (x)

h

≥ E

∫ τ
b∗pa,b,ϵ
x ∧σb̂

x

0

(
inf

(h,y)∈(−b∗pa,b,ϵ
,b∗pa,b,ϵ

)c×R
cxx(h, y)

)
e−ϵs ds

 =: δ. (6.8)

Observe, due to Proposition 6.3.6 the constant δ is greater than zero. Thus, using Lemma 6.3.5
and Proposition 6.3.4, we get:

0 = Vpa,b(b2)− Vpa,b(b1) = lim
n→∞

Vpan,bn (b2)− Vpan,bn (b1) ≥ δ(b2 − b1),

arriving to a contradiction. Therefore F1 is continuous. With an analogue argument we can
prove F2 is continuous, concluding the proof of the lemma.

Proof of Theorem 6.2.3. Due to Proposition 6.3.1 and Lemma 6.3.7, we are in the hypothesis
of Brouwer fixed-point Theorem. Thus, using the notation of Proposition 6.3.1 we have a fixed
point (a∗, b∗) of the function F . Due to Theorem 5.2.1 we deduce that (a∗, b∗) is an ϵ-discounted
equilibrium.

6.4 Mean field equilibrium for the ergodic problem

To prove Theorem 6.2.4, to show that the optimal strategies converge to an optimal strategy,
first we need to show that

lim
ϵ→0

ϵJϵ(x, U
a,b, Da,b, p) → J(x, Ua,b, Da,b, p).

For that endeavour we need to use theory of regenerative processes (see Section 2.6).

6.4.1 Ergodic results

The main tool that helps us in this section is Theorem 2.6.2 and for that endeavor we need to
define an adequate renewal process (see Definition 2.6.1) and an adequate accumulative process
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(see Definition 2.6.2 ) We define {τn}n as:

τ0 = inf{t ≥ 0, X0,b
t = 0, sup

0≤s≤t
X0,b

s = b},

τn+1 = inf{t ≥ τn, X0,b
t = 0, sup

τn≤s≤t
X0,b

s = b}.

Notice that {τn}n is a renewal process (see Lemma 2.6.1). and every τn is a stopping time.
Moreover, using again Lemma 2.6.1:

Ex(τ0) ≤ Ex(τn+1 − τn) < ∞ for all n ≥ 1, x ∈ R. (6.9)

We proceed to study the abelian limit of the costs.

Proposition 6.4.1. If X has bounded (unbounded) variation and a ≤ b (a < b), x ∈ R, then:

lim
ϵ→0

ϵJϵ(x, U
a,b, Da,b, Xa,b

∞ ) = J(x, Ua,b, Da,b, Xa,b
∞ )

Proof. First of all, notice that the next arguments hold if a = b (when the process has bounded
variation). Moreover, it is enough to prove (even if x /∈ [a, b]):

lim
ϵ→0

ϵEx

(∫ 1/ϵ

0

c(Xa,b
s , pa,b)ds−

∫ ∞

0

(
c(Xa,b

s , pa,b)
)
e−ϵsds

)
= 0, (6.10)

lim
ϵ→0

ϵEx

(∫ 1/ϵ

0

qud(U
a,b
s )−

∫ ∞

0

que
−ϵsd(Ua,b

s )

)
= 0, (6.11)

To prove (6.10) and (6.11), denote Sn := τn, ∀ n. Observe that we can assume x = a (which
implies τ0 = 0 and there is no first jump) due to the strong markov property. Furthermore
notice that the processes

(Z1)t :=

∫ t

0

(
c(Xa,b

s , pa,b)
)
ds, (Z2)t :=

∫ t

0

qud(U
a,b
s )

are cumulative (due to Theorem 2.2.4). We proceed to prove that the three processes are in
the hypothesis of Theorem 2.6.2. Firstly, using the continuity of c and (6.9), we deduce Z1 is
in the hypothesis of Theorem 2.6.2.
Secondly notice;

Ea

(
max
0≤t≤τ1

|(Z2)t|
)

≤ quExU
a,b
τ1

.
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Therefore, to prove that Z2 is in the hypothesis of Theorem 2.6.2, it is enough to prove

EaU
a,b
τ1

< ∞. (6.12)

Observe, due to (5.12) and the fact X has finite mean, it is enough to prove Ea(τ1) < ∞.
Denoting γb+ , γ0− the first time X0,b hits b and 0 respectively, it is clear it is enough to prove

E(γb+) + Eb (γ0−) < ∞. (6.13)

Moreover, we only prove (as the other proof follows the same argument) E(γb+) < ∞ in the
appendix, Lemma A.2.3. We deduce (6.13) holds and Z2 is in the hypothesis of Theorem 2.6.2.
Finally to finish the proof of the Proposition, we study the second integral of each equation
(6.10) and (6.11). More precisely, observe:

lim
ϵ→0

ϵEa

(∫ ∞

0

c(Xa,b
s , pa,b)e−ϵsds

)
= lim

ϵ→0
ϵ

∞∑
n=0

(
Eae

−ϵτ1
)n

Ea

(∫ τ1

0

c(Xa,b
s , pa,b)e−ϵsds

)
= lim

ϵ→0
ϵ

∞∑
n=0

(
Eae

−ϵτ1
)n

Ea

(∫ τ1

0

c(Xa,b
s , pa,b)ds

)
= lim

ϵ→0
ϵ
Ea ((Z1)τ1)

1− Ea(e
−ϵτ1)

= lim
ϵ→0

Ea ((Z1)τ1)

Ea

((
1− e−ϵτ1

) τ1
ϵτ1

) =
Ea ((Z1)τ1)

Eaτ1
,

where in the last equality the dominated convergence Theorem has been used. Therefore, using
Theorem 2.6.2, we deduce the equation (6.10) holds. A similar reasoning can be used to deduce
that (6.11) hold, concluding the proposition.

Lemma 6.4.2. If X has bounded (unbounded) variation and a ≤ b (a < b), {(an, bn, ϵn)}n is a
sequence that converges to (a, b, 0) when n → ∞ and an ≤ bn, (an < bn) for all n, then:

lim
n→∞

ϵnJϵn(x, U
an,bn , Dan,bn , Xan,bn

∞ ) = J(x, Ua,b, Da,b, Xa,b
∞ )

for all x /∈ {a, b}.

Proof. First, we assume x ∈ (a, b). Due to Proposition 6.4.1, it is enough to prove:

lim
n→∞

ϵnEx

(∫ ∞

0

(
c(Xa,b

s , pa,b)e−ϵns
)
ds−

∫ ∞

0

(
c(Xan,bn

s , pan,bn)
)
e−ϵnsds

)
= 0 (6.14)

139



and
lim
n→∞

ϵnEx

(∫ ∞

0

que
−ϵnsd(Ua,b

s )−
∫ ∞

0

que
−ϵnsd(Uan,bn

s )

)
= 0. (6.15)

Equality (6.14) holds due to the fact c is continuous and Lemma 6.3.5.
Equation (6.15) is deduced from Proposition 5.5.2 and integration by parts. For the case x < a,
observe x < an for n big enough. Moreover the initial jump can be ommited in the limit because
ϵn goes to zero. Finally, by translating the process we observe that it is enough to prove

lim
n→∞

ϵnE

(∫ ∞

0

(
c(a+X0,b−a

s , pa,b)e−ϵns
)
ds−

∫ ∞

0

(
c(an +X0,bn−an

s , pan,bn)
)
e−ϵnsds

)
= 0

and
lim
n→∞

ϵnE

(∫ ∞

0

que
−ϵnsd(U0,b−a

s )−
∫ ∞

0

que
−ϵnsd(U0,bn−an

s )

)
= 0,

Following the same line of reasoning as the case x ∈ (a, b), it can be proven that the three
limits hold. Finally the case x > b is obviously analogue to the case x < a, thus the proof of
the lemma is concluded.

6.4.2 Proof of Theorem 6.2.4

We have enough results to prove Theorem 6.2.4.

Proof of Theorem 6.2.4. Using the notation of Proposition 6.3.1, take a sequence
{(a∗ϵn , b

∗
ϵn)}n∈N ⊂ [−L,L]2 such that (a∗ϵn , b

∗
ϵn) is an ϵn discounted equilibrium for every n and a

couple (a∗, b∗) ∈ [−L,L]2 satisfying

(ϵn, (a
∗
ϵn , b

∗
ϵn)) → (0, (a∗, b∗)), when n → ∞.

This sequence exists due to Proposition 6.3.1. Now we assume x /∈ {a∗, b∗}. To prove (i) observe
it is enough to prove

G(x,Xa∗,b∗

∞ )− lim
n→∞

ϵnGϵn(x,X
a∗,b∗

∞ ) = 0, (6.16)

lim
n→∞

(
ϵnGϵn(x,X

a∗,b∗

∞ )− ϵnGϵn(x,X
a∗ϵn ,b

∗
ϵn∞ )
)
= 0, (6.17)

lim
n→∞

ϵnGϵn(x,X
a∗ϵn ,b

∗
ϵn∞ )− J(x,Xa∗,b∗

∞ , Ua∗,b∗ , Da∗,b∗) = 0. (6.18)

The limit (6.16) is deduced from Theorem 5.2.2. To prove that the second limit (6.17) holds,
observe that for every Xµ1

∞ , Xµ2
∞ ∈ P∞, A ≤ B, A,B ∈ [−L,L], ϵ > 0 (the inequality strict if
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the process has unbounded variation) :

ϵJϵ(x, U
A,B, DA.B, Xµ1

∞ )− ϵJϵ(x, U
A,B, DA.B, Xµ2

∞ )

= ϵEx

(∫ ∞

0

e−ϵs
(
c(XA,B

s , Xµ1
∞ )− c(XA,B

s , Xµ2
∞ )
)
ds

)
.

Therefore:

ϵnGϵn(x, p
a∗,b∗)− ϵnGϵn(x, p

a∗ϵn ,b
∗
ϵn ) ≤ 2 sup

y∈[−L,L]

|c(y, pa∗,b∗)− c(y, pa
∗
ϵn

,b∗ϵn )|. (6.19)

Thus from the continuity of c and Lemma 6.3.5, we conclude that the limit (6.17) holds. Finally,
the limit (6.18) is deduced from Theorem 5.2.1 and Lemma 6.4.2.
To prove ii), due to i), we use the limits in (6.16) and (6.17).
For the case x = a∗, observe G is constant so what we have to study is statement (ii). Take
h > 0 and observe:

lim sup
n→∞

G(a∗, Xa∗,b∗

∞ )− ϵnGϵn(a
∗, Xa∗n,b

∗
n

∞ )

≤ lim sup
n→∞

G(a∗, Xa∗,b∗

∞ )− ϵnGϵn(a
∗ − h,Xa∗n,b

∗
n

∞ )

= G(a∗, Xa∗,b∗

∞ )−G(a∗ − h,Xa∗,b∗

∞ ). (6.20)

On the other hand

lim inf
n→∞

G(a∗, Xa∗,b∗

∞ )− ϵnGϵn(a
∗, Xa∗n,b

∗
n

∞ )

≥ lim sup
n→∞

G(a∗, Xa∗,b∗

∞ )− ϵnGϵn(a
∗ − h, pa

∗
n,b

∗
n)− ϵh (qu + qd)

= G(a∗, Xa∗,b∗

∞ )−G(a∗ − h,Xa∗,b∗

∞ ). (6.21)

From (6.20) and (6.21) we deduce the theorem for the case x = a∗. The case x = b∗ is clearly
analogue so the proof of the theorem is concluded.

6.5 Examples

We provide two examples, one for the discounted problem and one for the ergodic problem.
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6.5.1 MFG Discounted problem with quadratic cost for a Com-

pound Poisson process with two-sided exponential jumps and
Gaussian Noise

This is the extension of the control problem 5.6.3. In this case, ϵ > 0 is fixed, c(x, y) = h(y)x2/2

with h a non-negative continuous function and f(y) a continuous function with infimum greater
than zero. Let us recall the Lévy process process {Xt}t≥0 has non-zero mean defined by

Xt = x+ σWt +

N
(1)
t∑

i=1

Y
(1)
i −

N
(2)
t∑

i=1

Y
(2)
i , (6.22)

with {Wt}t≥0 a Brownian motion, σ > 0, and {N (1)
t }t≥0,{N (2)

t }t≥0,{Y (1)
i }i≥1, {Y (2)

i }i≥1 the five
processes are independent The control problem is of the form:

Gϵ(x,E(f(X
η
∞))) = Jϵ(x, (U

a∗,b∗ , Da∗,b∗),E(f(Xη
∞))).

Similarly to 5.6.3 we have:

Mx(a, b,E(f(X
η
∞)))

= h (E(f(Xη
∞)))Ex

(∫ τ(a)∧σ(b)

0

e−ϵsXsds−
qu

h (E(f(Xη
∞)))

e−ϵτ(a)1{τ(a)<σ(b)}

+
qd

h (E(f(Xη
∞)))

e−ϵσ(b)1{σ(b)<τ(a)}

)
,

and applying Theorem 5.2.1, to solve the discounted control problem, we need to find a∗ < 0 <

b∗ such that
M0(a

∗, b∗,E(f(Xη
∞))) = sup

a<0
inf
b>0

M0(a, b,E(f(X
η
∞))),

and then find a fixed point to the adjoint MFG problem. As seen in Example 5.6.3, this can be
turned into an analytic problem. With that example in mind the points a∗ ∼ −2.017, b∗ ∼ 2.311

are a MFG equilibrium for the parameters:

qd = qu = h
(
E
(
f(X−2.017,2.311

∞ )
))

, α1 = 2, α2 = 1, λ2 = 1, λ1 = 1, ϵ = 1, σ =
√
2.

6.5.2 Ergodic MFG for Strictly stable process

In this case c(x, y) = x2(1+ y) and f(y) = y2. This example is the continuation of the example
provided in 5.6.4. Here c(x, y) = x2y, f(y) = y2 and the Lévy process X is strictly α- stable
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with parameter α ∈ (1, 2), 0 < c+ < c−. The notations for Π, are the same as 5.6.4. Let us
recall

ρ =
1

2
+ (πα)−1 arctan

((c+ − c−

c+ + c−

)
tan(απ/2)

)
,

from (5.66):

E(D0,d
1 ) =

c−β(2− αρ, αρ) + c+β(2− α(1− ρ), α(1− ρ))

β(αρ, α(1− ρ))α(α− 1)(2− α)

1

dα−1
= E(D0,1

1 )
1

dα−1
.

and from (5.67) we have

a = −
∫ d

0

xπ0,d(x)dx = −dρ,

J(d, (X0,d
∞ + a)) = (1 + E(X0,d

∞ + a)2)d2
ρ(1− ρ)

α + 1
+

1

dα−1
qE(D0,1

1 ).

By differentiation:

d∗ =

(
(α2 − 1)qE(D0,1

1 )

(1 + E(X0,d
∞ − dρ)2)2ρ(1− ρ)

)1/(α+1)

.

On the other hand, using (5.65) we deduce

1 + E(X0,d
∞ − dρ)2 = 1 + d2

ρ(1− ρ)

α + 1
.

Therefore we conclude that the points (a∗, b∗) that define an ergodic MFG equlibrium are unique
and are characterized by the equations:

a∗ = −b∗
ρ

1− ρ
,

(b∗/(1− ρ))α+1

(
α + 1 + (b∗)2ρ/(1− ρ)

α + 1

)
=

(α2 − 1)qE(D0,1
1 )

2ρ(1− ρ)
.

With the change of variable u := (b∗)α+1 we can solve the equation and obtain:

a∗ = −b∗
ρ

1− ρ
,

b∗ =


− 1

(1− α)α+1
+

√
1

(α− 1)2α+2
+ 4

ρ

(1− ρ)α+2

(α2 − 1)qE(D0,1
1 )

2ρ(1− ρ)

2
ρ

(1− ρ)α+2


1/(α+1)

.

For example when we take the values q = 1, c− = 2, c+ = 1, α = 1.5 the MFG
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ergodic equilibrium (a∗, b∗) ∼ (−0.52, 0.395). We present an illustrative graphic where
c− = 2, c+ = 1, the domain is (α, q) ∈ (1, 2)× (0, 10) and the output is the value d∗ := b∗ − a∗:

6.6 Approximation of Nash equilibria in symmetric N-

player games with mean field interaction

In this section, we present an approximation result for Nash equilibria in the N -player game
corresponding to the ergodic mean field game considered above, when the number of players
N tends to infinity. Informally speaking, this section is very similar to 4, except for the fact
that the interaction between players is through its stationary distribution. Moreover we need
to work with a more restrictive set of controls. In order to formulate the approximation result,
consider:

(i) A filtered probability space (Ω,F ,F = {Ft}t≥0,P) that satisfies the usual conditions,
where all the processes are defined.

(ii) Adapted independent Lévy processes X, {X i}i=1,2,....

(iii) Instead of working with the set of admissible controls A, we restrict ourselves to the
reflecting controls. In particular we denote ηa,bi = (U i,a,b, Di,a,b) as the reflection of the
process X i in the barriers a ≤ b (the inequality strict if the process has unbounded
variation). For simplicity and coherence we denote its X i,a,b controlled process and X i,a,b

∞

its stationary adjoint random variable.
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We define a vector of reflecting barriers by

Λ = (ηa1,b11 , . . . , ηaN ,bN
N )

and similar to Section 4.5,

Λ−i = (ηa1,b11 , . . . , η
ai−1,bi−1

1 , η
ai+1,bi+1

1 , . . . , ηaN ,bN
N ),

(ηa,b,Λ−i) = (ηa1,b11 , . . . , η
ai−1,bi−1

i−1 , ηa,b, η
ai+1,bi+1

i+1 , . . . , ηaN ,bN
N ),

and denote

f̄−i =
1

N − 1

N∑
j ̸=i

f(Xj,aj ,bj
∞ ), f̄a,b,−i =

1

N − 1

N∑
j ̸=i

f(Xj,a,b
∞ ), (6.23)

and, given η = (Ua,b, Da,b) ∈ A, for (η,Λ−i), consider

J i
∞,N(x, η,Λ

−i) = lim sup
T→∞

1

T
Ex

(∫ T

0

c
(
X i,a,b

s , f̄−i
)
ds+ quU

i,a,b
T + qdD

i,a,b
T

)
, (6.24)

Jϵ,N(x, η,Λ
−i) = Ex

(∫ ∞

0

e−ϵs
(
c(Xa,b

s , f̄−i)ds+ qudU
a,b
s + qddD

a,b
s

)
+ quu

a,b
0 + qdd

a,b
0

)
, (6.25)

Definition 6.6.1. For fixed ϵ > 0 and N ∈ N, a vector of admissible stationary bounded
controls Λ = (ηa1,b11 , . . . , ηaN ,bN

N ) is called

(i) an r-ergodic Nash equilibrium if for all i and all x ∈ R,

J i
∞,N(x, η

ai,bi
i ,Λ−i) ≤ J i

∞,N(x, µ,Λ
−i) + r, for all µ reflecting control.

(ii) an r, ϵ-discounted Nash equilibrium if for all i and all x ∈ R,

J i
ϵ,N(x, η

ai,bi
i ,Λ−i) ≤ J i

ϵ,N(x, µ,Λ
−i) + r, for all µ reflecting control.

We omit the proof of the next theorem as it is almost equal to the proof of the first statement
of Theorem 4.5.1 (clearly in the discounted case the integral is in the half-positive line and there
is an exponential factor but the proof is the same).

Theorem 6.6.1. Consider a cost function c(x, y) that satisfies Assumption 6.2.2, for every
fixed x the function c(x, y) is convex and the set of admissible controls is the set of reflecting
controls for each process X i, i = 1, . . . , N , instead of A, Then, if (a, b) is an equilibrium point
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for the mean field game driven by X, given r > 0, the vector of controls

Λa,b = ((U1,a,b, D1,a,b), . . . , (UN,a,b, UN,a,b)), (6.26)

is

(i) a r-ergodic Nash equilibrium for N large enough.

(ii) a r, ϵ-discounted Nash equilibrium for N large enough.

Let us observe that, unlike Chapter 4, the case where the cost function is c(x, y) = |x− y|
is not treated in this theorem as it is not a running cost function under Definition 6.2.2.
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A.1 Reflection of Itô diffusions on intervals

The objective of this Appedix is to give a simplified proof of [Lions and Sznitman (1984),
Theorem 3.1]. That is to show that for an Itô-diffusion the reflecting controls are well defined
in the sense that they exist and are unique.

Remark A.1.1. In the article [Lions and Sznitman (1984)], the authors assumed the coeffi-
cients µ, σ to be globally Lipschitz. However in our framework where the reflection is in an
interval, this hypothesis can be easily relaxed to locally Lipschitz.

The notations and hypotheses are the same as chapters 3 and 4. Let us recall from 2.5 the
following definition

Definition A.1.1. Let a < b be a pair of real numbers. The double Skorkhod map Γa,b is the
mapping from D[0,∞) into itself such that for ρ ∈ D[0,∞), Γa,b(ρ) takes values in [a, b] and
has the decomposition.

Γa,b(ρ) = ρ+ Ua,b −Da,b,

where Ua,b, Da,b ∈ D[0,∞) are non decreasing and satisfy∫ ∞

0

(Γa,b(ρ)(t)− a)dUa,b
t = 0,

∫ ∞

0

(b− Γa,b(ρ)(t))dD
a,b
t = 0.

Moreover, in t = 0 the functions Ua,b, Da,b project ρ(0) to the closest point in [a, b].

As said in 2.5 for every càdlàg function and pair a < b the double Skorkhod map is well
defined in the sense that it exists and is unique. We will use this result in the main Theorem
of this section. For the rest of the section a < b are fixed and µ and σ > 0 are locally Lipschitz
functions. We also denote the deterministic reflections of a process Z = {Zt}t≥0 on [a, b] as
Ua,b
Z = {Ua,b

Z,t}t≥0 , Da,b
Z = {Da,b

Z,t}t≥0.

Definition A.1.2. We denote the space H to be the Frechet space of continuous adapted pro-
cesses X satisfying

E sup
0≤s≤t

X4
t < ∞, for all t ≥ 0,

eqquiped with the seminorm

||X||t =
(
E sup

0≤s≤t
X4

t

)1/4

.

Moreover we define F : H → H in the following way:

• Take the process Z = {Zt}t≥0 as follows:

dZt = µ(Xt)dt+ σ(Xt)dWt, Z0 = x0. with x0 the starting point of X.
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• Define Y = {Yt}t≥0 as the controlled process:

Yt = Zt + Ua,b
Z,t −Da,b

Z,t

It is clear then, that we need to find a fixed point of F and prove its uniqueness.

Lemma A.1.1. Assume µ and σ are globally Lipschitz, then there are four positive constants
K1, K2, K3, K4 satisfying

||F (X)− F (X ′)||4T ≤ eK1T+K2T 2

(K3 +K4T )

∫ T

0

||X −X ′||4sds, for every T ≥ 0, X,X ′ ∈ H.

Proof. By Itô formula we have for every t ≥ 0:

(Yt − Y ′
t )

2 = 2

∫ t

0

(Ys − Y ′
s ) (σ(Xs)− σ(X ′

s)) dWs + 2

∫ t

0

(Ys − Y ′
s ) (µ(Xs)− µ(X ′

s)) ds

+

∫ t

0

(σ(Xs)− σ(X ′
s))

2
ds+ 2

∫ t

0

(Ys − Y ′
s )
(
dUa,b

Z,t − dDa,b
Z,t − dUa,b

Z′,t + dDa,b
Z′,t

)
.

The last term is non-positive because the reflection only increase when the process is in the
barrier. Thus we have the inequality:

(Yt − Y ′
t )

2 ≤ 2

∫ t

0

(Ys − Y ′
s ) (σ(Xs)− σ(X ′

s)) dWs + 2

∫ t

0

|(Ys − Y ′
s ) (µ(Xs)− µ(X ′

s))| ds

+ 2

∫ t

0

(σ(Xs)− σ(X ′
s))

2
ds =: It. (27)

Observe that the integral with respect to the brownian motion is a martingale due to the fact
that σ is Lipschitz, Y, Y ′ are bounded and∫ t

0

(Xs −X ′
s)

2ds < ∞.

Therefore we have that the process(∫ t

0

(Ys − Y ′
s ) (σ(Xs)− σ(X ′

s)) dWs

)2

−
∫ t

0

(Ys − Y ′
s )

2 (σ(Xs)− σ(X ′
s))

2
ds (28)

is a local martingale. Using [Protter (2005), Chapter II, Setion 6, Corollary 3], we can take
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means in (33) to obtain

E

(∫ t

0

(Ys − Y ′
s ) (σ(Xs)− σ(X ′

s)) dWs

)2

= E

∫ t

0

(Ys − Y ′
s )

2 (σ(Xs)− σ(X ′
s))

2
ds, (29)

for all t ≥ 0. Therefore It is a submartingale. Moreover, using Cauchy inequality, (27) and (29)
we deduce:

EI2t ≤ 12E

∫ t

0

(Ys − Y ′
s )

2 (σ(Xs)− σ(X ′
s))

2
ds+ 12tE

∫ t

0

(Ys − Y ′
s )

2 (µ(Xs)− µ(X ′
s))

2
ds

+ 3tE

∫ t

0

(σ(Xs)− σ(X ′
s))

4
ds. (30)

Now, we use Doob’s inequality, the fact µ, σ are Lipschitz and (30) to deduce there are three
of positive constants C1, C2, C3, such that:

E

(
sup
0≤s≤t

(Yt − Y ′
t )

4

)
≤ E sup

0≤s≤t
I2s

≤ 4EI2t ≤ (C1 + C2t)

∫ t

0

E(Ys − Y ′
s )

2(Xs −X ′
s)

2ds+ C3t

∫ t

0

E(Xs −X ′
s)

4ds.

By using the inequality xy ≤ x2+y2

2
:

E

(
sup
0≤s≤t

(Yt − Y ′
t )

4

)
≤ E sup

0≤s≤t
I2s ≤ 4EI2t

≤ C1 + C2t

2

∫ t

0

E(Ys − Y ′
s )

4ds+
C1 + C2t+ 2C3t

2

∫ t

0

E(Xs −X ′
s)

4ds.

Therefore, by renaming the constants, for every t ≤ T :

E

(
sup
0≤s≤t

(Yt − Y ′
t )

4

)
≤ (K1 +K2T )

∫ t

0

E(Ys − Y ′
s )

4ds+ (K3 +K4T )

∫ t

0

E(Xs −X ′
s)

4ds.

Finally, by using Grownall lemma applied to the function t → E
(
sup0≤s≤t(Yt − Y ′

t )
4
)
:

E

(
sup
0≤s≤t

(Yt − Y ′
t )

4

)
≤ eK1T+K2T 2

(K3 +K4T )

∫ t

0

E(Xs −X ′
s)

4ds,

we conclude the Lemma.

Theorem A.1.2. Adaptation of [Lions and Sznitman (1984), Theorem 3.1] Let X = {Xt}t≥0

be an Itô-diffusion with associated Lipschitz functions µ and σ. Let a < b and x ∈ R, then there
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exists an unique triple (Xa,b = {Xa,b
t }t≥0, U

a,b = {Ua,b
t }t≥0, D

a,b = {Da,b
t }t≥0) such that Xa,b is

the unique strong solution of the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt + dUa,b
t − dDa,b

t , X0 = x, Ua,b
0 = (a− x)+, Da,b

0 = (x− b)+, (31)

and Ua,b, Da,b are increasing continuous processes satisfying∫ ∞

0

(Xa,b
t − a)dUa,b

t = 0,

∫ ∞

0

(b−Xa,b
t )dDa,b

t = 0.

Proof. Due to the definitions of Ua,b
0 and Da,b

0 we can assume the starting point x ∈ [a, b]. It
is clear that it is enough to prove that F has an unique fixed point. For a fixed X0 ∈ H, let
X(n) := F ◦ · · · ◦F (X) = F (n)(X), n ≥ 1. First we prove by induction that the next inequality
holds:

E sup
0≤s≤T

(Xn+1
s −Xn

s )
4 ≤ en(K1T+K2T 2)(K3 +K4T )

n(b− a)4

n!
, for all T ≥ 0, n ≥ 1. (32)

The case base n = 1 holds due to Proposition A.1.1. Now, we assume the claim holds for n ≥ 1

and again we use Proposition A.1.1 to get :

E sup
0≤s≤T

(Xn+2
s −Xn+1

s )4 ≤ eK1T+K2T 2

(K3 +K4T )

∫ T

0

E

(
sup

0≤u≤s
(Xn+1

u −Xn
u )

4

)
ds

≤ eK1T+K2T 2

(K3 +K4T )

∫ T

0

snen(K1T+K2T 2)(K3 +K4T )
n(b− a)4

n!
ds

=
e(n+1)(K1T+K2T 2)(K3 +K4T )

n+1(b− a)4

(n+ 1)!
.

By Chebyshev inequality we have:

P

(
sup

0≤s≤T
|Xn

s −Xn+1
s |2 > 1

n2

)
≤ n2en(K1T+K2T 2)(K3 +K4T )

n(b− a)4

n!
.

Now, we use Borel Cantelli Lemma (see [Borodin (2013), page 133], for a similar argument)
and deduce there is a continuous bounded adapted process X ∈ H such that

P

(
lim
n→∞

sup
0≤s≤T

|Xn
s −Xs| = 0

)
= 1, lim

n→∞
||Xn −X||T = 0, for all T ≥ 0.

Due Lemma A.1.1, we can use the || ||T continuity of the map F and conclude X is a fixed
point, concluding the proof of the existence. For the uniqueness, take X, Y two fixed points of
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F . As in (32) we can prove:

E sup
0≤s≤T

(F n(X)− F n(Y ))4 ≤ en(K1T+K2T 2)(K3 +K4T )
n(b− a)4

n!
, for all T ≥ 0, n ≥ 1,

which clearly implies X = Y in [0, T ] almost surely as n is arbitrary.

Remark A.1.2. It is clear that we only proved the existence and uniqueness in [0, T ]. However
this implies both results in all the real half-line as one can observe that if X1 and X2 are the
solutions of the SDE in Theorem A.1.2 in [0, T1] and [0, T2] respectively with T1 < T2 then
X2 = X1 in [0, T1] (see [Protter (2005), Chapter V, Section 3, Theorem 7], for a similar
argument).

Corollary A.1.3. The same result as the previous Theorem is valid if µ and σ are locally
Lipschitz.

Proof. For both the existence and uniqueness, take µ, σ a couple of globally Lipschitz functions
whose restriction in [a, b] are equal to µ and σ respectively and use Theorem A.1.2.

A.2 Regenerative properties of Lévy processes

In this section the objective is to prove the technical ergodic and probabilistic results for the
controlled Lévy processes we assumed in the previous chapters. We use the same notations and
hypotheses as Chapters 5 and 6.

Lemma A.2.1. If Z = {Zt}t≥0 is a bounded semimartingale and X = {Xt}t is a Lévy process
with zero mean then:

It :=

∫ t

0

Zs−dXs, t ≥ 0, is a martingale.

Proof. From [Protter (2005), Chapter IV, Section 2, Theorem 11], we have that the result holds
if X is a square-integrable martingale. Therefore it is enough to prove the result when X is a
finite mean, Compound Poisson process with drift µ. That is, there is a i.i.d sequence {Yi}i∈N
of finite mean, random variables and a poisson process N = {Nt}t≥0 with intensity λ > 0 such
that:

Xs = x+
Nt∑
i=1

+µt

We know from [Protter (2005), Chapter IV, Section 2, Theorem 11], Zs−dXs is a local mar-
tingale, that is, there exist an increasing sequence {τn}n≥0 of stopping times converging to ∞
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almost surely such that Zs−dX
τn
s is a martingale. Take t ≥ u, we have:

lim
n→∞

E

(∫ t∧τn

0

Zs−dXs

∣∣∣∣Fu

)
= lim

n→∞

∫ u∧τn

0

Zs−dXs. (33)

On the other had, we have for all n ∈ N, t > 0:

∣∣∣∣∫ t

0

Zs−dXs

∣∣∣∣ ≤ sup
s≥0

|Zs− |

(
Nt∑
i=1

|Yi|+ |µ|t

)
.

Thus we can use dominated convergence theorem in both sides of equality (33) to conclude the
lemma.

Proposition A.2.2. Assume X = {Xt}t≥0 is a finite mean Lévy process which is not trivial,
nor a subordinator, nor the opposite of a subordinator. For a fixed b > 0, by writing X as the
following sum of independent Lévy processes:

Xt = µt+N t +

∫
|x|≥δ

∫ t

0

xN(ds× dx) + σWt, N a martingale, δ > 0

we have:

(i) If µ ≤ 0 then there is a t > 0 such that

P

(
sup
0≤s≤t

Xs ≥ b

)
> 0.

(ii) In other case the same result is valid for every t ≥ 3b/µ.

Proof of (i). If σ = 0, we can assume that π[δ,∞) > 0. Using the fact that Lévy processes tend
to zero when t → 0+ almost surely, we deduce there is a t small enough such that:

P

((
µt+N t +

∫
x<−δ

∫ t

0

xN(ds× dx) > −b

)
⋂((

sup
0≤s≤t

σWs ≥ 2b

)⋃(∫
x>δ

∫ t

0

xN(ds× dx) ≥ 2b

)))
> 0,

because the three processes are independent and the last one is a Compound Poisson process.
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Proof of (ii). For the second proof, simply observe that for every t > 0

P

(
inf

0≤s≤3b/µ
Xs − µs > −b

)
> 0

Lemma A.2.3. Let X = {Xt}t≥0 be a Lévy process with finite mean such that X is not trivial,
is not a subordinator nor the opposite of a subordinator. Let {τn}n be defined as:

τ0 = inf{t ≥ 0, X0,b
t = 0, sup

0≤s≤t
X0,b

s = b},

τn+1 = inf{t ≥ τn, X0,b
t = 0, sup

τn≤s≤t
X0,b

s = b}.

Then {τn}n∈N is a renewal process and E(τn) < ∞ for every n ∈ N.

Proof. Due to the strong markov property, the only non trivial statement is that the stopping
times have finite mean. It is clear Eτ1 = E(τn − τn−1) for all n ≥ 1 and Eτ1 ≤ Eτ0. Thus it is
enough to prove Eτ0 < ∞. Denoting γb+ , γ0− the first time X0,b hits b and 0 respectively, it is
clear it is enough to prove

E(γb+) + Eb (γ0−) < ∞.

We only prove E(γb+) < ∞ as the other claim is analogue. Take t > 0 as in Proposition A.2.2,
then we have:

P

(
sup
0≤s≤t

X0,b
s < b

)
≤ P

(
sup
0≤s≤t

Xs < b

)
< 1. (34)

On the other hand observe for all i ≥ 1:{
ω : sup

t(i−1)≤s≤ti

X0,b
s < b

}
⊂

{
ω : sup

t(i−1)≤s≤ti

Xs −Xt(i−1) < b,

}
,

because if Xs −Xt(i−1) ≥ b for some s ∈ [t(i− 1), ti] then there has been an increment equal or
bigger than b in that interval which implies supt(i−1)≤s≤ti

X0,b
s = b. We deduce:

P

(
sup

0≤s≤tn
X0,b

s < b

)
= P

(
n⋂

i=1

sup
t(i−1)≤s≤ti

X0,b
s < b

)

≤
n∏

i=1

P

(
sup

t(i−1)≤s≤ti

Xs −Xt(i−1) = b

)
≤ P

(
sup
0≤s≤t

Xs < b

)n

. (35)
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Therefore, using inequalities (34) and (35) we conclude:

E(γb+) =

∫ ∞

0

P(γb+ > x)dx ≤
∞∑
n=1

tP(γb+ > t(n− 1)) ≤ t
∞∑
n=1

P

(
sup
0≤s≤t

Xs < b

)n−1

< ∞.

Corollary A.2.4. Consider a pair of constants a < b, the following stopping time has finite
mean:

ηa,b := inf{t ≥ 0, Xt /∈ (a, b)}.

A.3 The problem of the first exit time of an interval for

some Lévy processes

For a Lévy process X = {Xt}t≥0, and a given couple a < 0 < b and η defined as the first exit
of the interval (a, b), the two-barrier problem consists in finding, the probabilities:

P(Xη < a), P(Xη = a), P(Xη = b), P(Xη > b),

and for ϵ > 0 the generalized discounted two-barrier problem

Ee−ϵη1Xη<a, Ee−ϵa1Xη=a, Ee−ϵb1Xη=b, Ee−ϵη1Xη>b.

These problems are open for general Lévy processes. The (discounted) two-barrier prob-
lem for the processes given in the examples provided in chapters 5 and 6 were solved in
[Kyprianou(2006)] and [Cai et al. (2009)]. Nevertheless, as the references for Compound Pois-
son process with two-sided exponential jumps with and without gaussian noise are more general
than our cases, we give a simplified solution of the problem for our particular case. We can
assume X0 = 0 because:

Px(Xγ < a) = P(Xγx < a−x), Px(Xγ ≤ a) = P(Xγx ≤ a−x), Px(Xγ ≥ b) = P(Xγx ≥ b−x),

with γx the first exit of (a−x, b−x). A powerful tool that we use in this section is the function

ϕ(z) = E(ezX1), z = iθ ∈ iR.
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A.3.1 Two-barrier problem for Poisson Compound Process with

two-sided exponential jumps and negative mean

We consider a compound Poisson process X = {Xt}t≥0 with double-sided exponential jumps,
given by

Xt =

N
(1)
t∑

i=1

Y
(1)
i −

N
(2)
t∑

i=1

Y
(2)
i , (36)

where {N (1)
t }t≥0 and {N (2)

t }t≥0 are two Poisson processes with respective positive intensities
λ1, λ2; {Y (1)

i }i≥1 and {Y (2)
i }i≥1 are two sequences of independent exponentially distributed ran-

dom variables with respective positive parameters α1, α2. The four processes are independent.
Consequently

ϕ(z) = λ1
z

α1 − z
− λ2

z

α2 + z
.

In this case EX1 = λ1/α1 − λ2/α2 < 0.

Lemma A.3.1. Consider the Lundberg constant ρ, i.e the positive root of ϕ(z) = 0, given by

ρ =
λ2α1 − λ1α2

λ1 + λ2

.

For a < 0 < b

P(Xη < a) =

(
α1 + α2

λ1 + λ2

)
− eρb/λ1

eρa/λ2 − eρb/λ1

, P(Xη > b) =

eρa/λ2 −
(
α1 + α2

λ1 + λ2

)
eρa/λ2 − eρb/λ1

.

Proof. Observe that 0 < ρ < α1. Therefore, the integrals:

E(eρXη1Xη<a), E(eρXη1Xη>b),

are well defined and {eρXt}t≥0 is a martingale. Using the loss of memory property of the jumps
we get the system of equations

1 = P(Xρ < a)

∫ 0

−∞
eα2ueρ(u+a)α2du+P(Xρ > b)

∫ ∞

0

e−α1ueρ(u+b)α1du,

1 = P(Xρ < a) +P(Xρ > b).
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Which is equivalent to the system:

1 = eρaP(Xρ < a)
(λ1 + λ2)/λ2

α1 + α2

+ eρbP(Xρ > b)
(λ1 + λ2)/λ1

α1 + α2

,

1 = P(Xρ < a) +P(Xρ > b).

This system has rank 2 because

eρa
(λ1 + λ2)/λ2

α1 + α2

= eρa
α2

ρ+ α2

< 1.

Moreover, taking into account the fact

α1

α1 − ρ
=

(λ1 + λ2)/λ1

(α1 + α2)
,

we deduce the solution is the one given in (37), thus concluding the proof of the lemma.

A.3.2 Discounted two-barrier problem for a Compound Poisson pro-
cess with two sided exponential jumps, Gaussian Noise and

non-zero mean

This subsection is an adaptation of [Cai et al. (2009)] for our particular case. Still, we prove
all the results to capture the essence of the paper.
Let ϵ be a positive fixed constant. The Lévy process process {Xt}t≥0 has non-zero mean defined
by

Xt = σWt +

N
(1)
t∑

i=1

Y
(1)
i −

N
(2)
t∑

i=1

Y
(2)
i ,

with {Wt}t≥0 a Brownian motion, σ > 0, and {N (1)
t }t≥0,{N (2)

t }t≥0,{Y (1)
i }i≥1, {Y (2)

i }i≥1. In this
case

ϕ(z) =
σ2

2
z2 + λ1

z

α1 − z
− λ2

z

α2 + z
.

Proposition A.3.2. The function z → ϕ(z)− ϵ has four non-zero roots ρi (i = 1, 2, 3, 4) that
satisfy ρ2 < −α2 < ρ1 < 0 < ρ3 < α1 < ρ4.

From now on ρi, (i = 1, 2, 3, 4) are these roots.
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Proof. It is clear that the function z → ϕ(z) − ϵ has almost four real roots. Furthermore
observe:

lim
z→−∞

ϕ(z)− ϵ = ∞, lim
z→−α−

2

ϕ(z)− ϵ = −∞, (37)

lim
z→−α+

2

ϕ(z)− ϵ = lim
z→α−

1

ϕ(z)− ϵ = ∞, ϕ(0)− ϵ = −ϵ (38)

lim
z→∞

ϕ(z)− ϵ = ∞, lim
z→α+

1

ϕ(z)− ϵ = −∞. (39)

Necessarily, from the term (37), we deduce there is a root ρ2 < −α2. From the term (38), we
obtain two roots ρ1 < 0 < ρ3 in the interval (−α2, α1). Finally, from the term (39), we deduce
there is root ρ4 > α1.

Proposition A.3.3. The matrix

Nb−a =


1 1 e−ρ1(a−b) e−ρ2(a−b)

1
α1 − ρ3

1
α1 − ρ4

e−ρ1(a−b)

α1 − ρ1
e−ρ2(a−b)

α1 − ρ2
eρ3(a−b) eρ4(a−b) 1 1

eρ3(a−b)

α2 + ρ3
eρ4(a−b)

α2 + ρ4
1

α2 + ρ1
1

α2 + ρ2


is always non-singular.

Proof. Let x := ea−b < 1. The inequalities ρ2 < −α2 < ρ1 < 0 < ρ3 < α1 < ρ4 will be used
without referencing them. We will prove that the transpose of Nb−a is invertible. That is, the
matrix 

1 1
α1 − ρ3

xρ3 xρ3

α2 + ρ3
1 1

α1 − ρ4
xρ4 xρ4

α2 + ρ4
x−ρ1 xρ4 1 1

α2 + ρ3
x−ρ2 xρ4

α2 + ρ4
1 1

α2 + ρ2

 .

By Gaussian elimination, it is equivalent to prove that the matrix


− 1
α1 − ρ3

+ 1
α1 − ρ4

xρ4 − xρ3 xρ4

α2 + ρ4
− xρ3

α2 + ρ3

x−ρ1

(
1

α1 − ρ1
− 1

α1 − ρ3

)
1− x−ρ1+ρ3 1

α2 + ρ1
− xρ3−ρ1

α2 + ρ3

x−ρ2

(
1

α2 − ρ2
− 1

α1 − ρ3

)
1− xρ3−ρ2 1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

 , (40)
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is invertible. Using Cramer’s rule, we express its determinant as:(
− 1

α1 − ρ3
+

1

α1 − ρ4

)(
1− xρ3−ρ1

)( 1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

)
(41)

+ (xρ4 − xρ3)

(
1

α2 + ρ1
− xρ3−ρ1

α2 + ρ3

)(
1

α1 − ρ1
− 1

α1 − ρ3

)
x−ρ2 (42)

+

(
xρ4

α2 + ρ4
− xρ3

α2 + ρ3

)(
1

α1 − ρ1
− 1

α1 − ρ3

)(
1− xρ3−ρ2

)
x−ρ1 (43)

−
(

1

α1 − ρ2
− 1

α1 − ρ3

)(
1− xρ3−ρ1

)( xρ4

α2 + ρ4
− xρ3

α2 + ρ3

)
x−ρ2 (44)

−
(
1− xρ3−ρ2

)( 1

α2 + ρ1
− xρ3−ρ1

α2 + ρ3

)(
− 1

α1 − ρ3
+

1

α1 − ρ4

)
(45)

−
(

1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

)(
1

α1 − ρ1
− 1

α1 − ρ3

)
(xρ4 − xρ3)x−ρ1 . (46)

We proceed to prove that the expression is always positive if 0 < x < 1, ρ2 < −α2 < ρ1 < 0 <

ρ3 < α1 < ρ4. First, lets examine the term (41) plus the term (44):

(
1− xρ3−ρ1

)((
− 1

α1 − ρ3
+

1

α1 − ρ4

)(
1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

)
−
(

1

α1 − ρ2
− 1

α1 − ρ3

)(
xρ4

α2 + ρ4
− xρ3

α2 + ρ3

)
x−ρ2

)
(47)

First observe, (1− xρ3−ρ1) > 0, 0 < x−ρ2 < 1. Thus, to prove that (47) is positive, it is enough
to show that the expression(

− 1

α1 − ρ3
+

1

α1 − ρ4

)(
1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

)
−
(

1

α1 − ρ2
− 1

α1 − ρ3

)(
xρ4

α2 + ρ4
− xρ3

α2 + ρ3

)
(48)

is positive. For that endeavor, observe that all the four terms inside the parentheses are negative,
thus it is enough that

−1

α1 − ρ4
+

1

α1 − ρ3
>

1

α1 − ρ3
− 1

α1 − ρ2
,

xρ3−ρ2

α2 + ρ3
− 1

α2 + ρ2
>

xρ4−ρ2

α2 + ρ3
− xρ4−ρ2

α2 + ρ4
.

Which are true because α1 − ρ4 < 0, α1 − ρ2 > 0 and α2 + ρ2 > 0, α2 + ρ4 > 0. Therefore the
term (41) plus the term (44) is positive. Lets prove that the (42) plus the term (46) is positive

158



too, that is the expression:

(xρ4 − xρ3)

(
1

α1 − ρ1
− 1

α1 − ρ3

)
×(

x−ρ2

(
1

α2 + ρ1
− xρ3−ρ1

α2 + ρ3

)
− x−ρ1

(
1

α2 + ρ2
− xρ3−ρ2

α2 + ρ3

))
. (49)

The product in the first line is positive because both terms are negative. What is left to do is
that the second line is positive. For that endeavor, observe both α2 + ρ1 and −(α2 + ρ2) are
positive and the rest of the terms cancel each other. Therefore (42) plus the term (46) is positive.
We proceed to show (43) is positive. This case is simple because (1− xρ3−ρ2)x−ρ1 > 0 and the
other two terms are negative because xρ4 < xρ3 , α2+ρ4 > α2+ρ3 and α1−ρ1 > 0, α1−ρ3 > 0.
Finally the term (45) is positive because (1 − xρ3−ρ2) > 0, xρ3−ρ1 < 1, α2 + ρ1 < α2 + ρ3 and
α1 − ρ4 < 0, −(α1 − ρ3) < 0. We conclude that the determinant is positive and deduce that
the matrix is always non-singular.

Unlike the case without Gaussian Noise, it is not obvious how to construct an adequate
martingale. We need a couple of propositions before using the matrix defined previously.

Proposition A.3.4. For every z ∈ iR, a > 0 the stochastic process:

Mt = e−at+zXt − 1− (log(ϕ(z))− a)

∫ t

0

e−as+zXsds,

is a martingale.

Proof. Take 0 ≤ u ≤ t and observe:

E(Mt|Fu) = e−au+zXuE(e−a(t−u)+z(Xt−Xu))− 1

− (log(ϕ(z))− a)

∫ u

0

e−as+zXsds− (log(ϕ(z))− a)

∫ t

u

e−au+zXuE(e−a(s−u)+z(Xs−u))ds

= e−au+zXuE(e−a(t−u)+z(Xt−u))− 1

− (log(ϕ(z))− a)

∫ u

0

e−as+zXsds− (log(ϕ(z))− a)e−au+zXu

∫ t−u

0

E(e−a+zX1)rdr

= Mu.

The last equality comes from the fact
∫
krdr = kr/ log(k) for k complex with positive real

part.
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Theorem A.3.5. Let a < 0 < b, γ the first exit of the interval (a, b). Consider any non-
negative measurable function f such that

∫∞
0

f(y + b)e−α1ydy and
∫ 0

−∞ f(y + a)eα2ydy are inte-
grable. For any ϵ > 0, we have:

Ef(Xγ)e
−ϵγ = (e−ρ3b, e−ρ4b, e−ρ1a, e−ρ2a)N−1

b−af ,

where f = (fu
0 , f

u
1 , f

d
0 , f

d
1 )

t with

fu
0 = f(b), fu

1 =

∫ ∞

0

f(y + b)e−α1ydy,

fd
0 = f(a), fd

1 =

∫ 0

−∞
f(y + a)eα2y.

Proof. When the process leaves the interval it might cross the boundaries, due to the gaussian
part, or jump above/below them, due to the jumps of the process. We define these events:

F0 = {Xγ = b}, G0 = {Xγ = a},

F1 = {Xγ > b}, G1 = {Xγ < a}.

Using the loss of memory property of the exponential distribution:

E(e−ϵγf(Xγ)) = Ee−ϵγ1F0f(b) + Ee−ϵγ1F1f
u
1 α1 + Ee−ϵγ1G0f(a) + Ee−ϵγ1G1f

d
1α2. (50)

On the other hand from Proposition A.3.4, we have for every z ∈ iR:

0 = Ee−ϵγ1F0e
zb + Ee−ϵγ1F1e

zb α1

α1 − z

+ Ee−ϵγ1G0e
za + Ee−ϵγ1G1e

za α2

α2 + z

− 1− (log(ϕ(z))− ϵ)E

∫ γ

0

exp(−ϵs+ zXs)ds. (51)

The right hand side of the equation defines a function H for z ∈ iR. Observe that the function
defined as z → (α1 − z)(α2 + z)H(z) can be extended to all the complex numbers. Moreover
its value is zero in all the imaginary numbers, thus the function is always zero. Therefore H is
zero in every z ∈ C− {α1, α2}. By using the fact ρi, i = 1, 2, 3, 4 are the roots of log(ϕ(z))− ϵ

we get that when z = ρi (51) can be rewritten as:

1 = Ee−ϵγ1F0e
ρib + Ee−ϵγ1F1e

ρib
α1

α1 − ρi
+ Ee−ϵγ1G0e

ρia + Ee−ϵγ1G1e
ρia

α2

α2 + ρi
.
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Which implies that the next matrix equation holds:

(
Ee−ϵγ1F0 Ee−ϵγ1F1α1 Ee−ϵγ1G0 Ee−ϵγ1G1α2

)
Nb−a = (e−ρ3b, e−ρ4b, e−ρ1a, e−ρ2a).

Multiplying the equality at the right by N−1
b−a f and using equation (50) we conclude the

proof.
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